Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Оптические квантовые генераторы (лазеры)





 

Практически инверсное состояние среды осуществлено в оптических квантовых генераторах, или лазерах (от первых букв английского названия Light Amplification by Stimulated Emission of Radiation – усиле­ние света с помощью вынужденного излучения). Лазеры генерируют в видимой, инфракрасной и ближней ультрафиолетовой областях (в оптическом диапазоне). Идея качественно нового принципа усиления и генерации электромагнитных волн, применен­ная в мазерах (генераторы и усилители, работающие в сантиметровом диапазоне радиоволн) и лазерах, принадлежит российским ученым Н.Г.Басову и А.М.Прохорову и американскому физику Ч. Таунсу, удостоен­ным Нобелевской премии 1964 г.

Важнейшими из существующих типов лазеров являются твердотельные, газовые, полупроводниковые и жидкостные (в основу такого деления положен тип активной среды). Более точная классификация учитывает также и методы накачки — оптические, тепловые, химические, электроионизационные и др. Кроме того, необходимо прини­мать во внимание и режим генерации – непрерывный или импульсный.

Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсий в активной среде); 3) оптический резонатор (устройство, выделя­ющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок).

Первым твердотельным лазером, работающим в видимой области спектра (длина волны излучения 0,6943 мкм), был рубиновый лазер, созданный в 1960 г. (Т.Мейман, США). На рис.16.1 представлена схема рубинового лазера. В нем инверсная населенность уровней осуществляется по трехуровневой схеме, предложенной в 1955 г. Н. Г. Басовым и А. М. Прохоровым. Кристалл рубина представляет собой оксид алюминия А12Оз, в кристаллической решетке которого некоторые из атомов А1 замещены трехвалентными ионами Сгэ+ (0,03 и 0,05% ионов хрома соответственно дня розового и красного рубина). Для оптической накачки используется импульсная газоразрядная лампа (2), спирально закрученная вокруг рубинового стержня (1). При интенсивном облучении рубина светом мощной импульсной лампы атомы хрома переходят с нижнего уровня на уровни широкой полосы 3 (рис. 16.2). Так как время жизни атомов хрома в возбужден­ных состояниях мало (меньше 10-7 с), то осуществляются либо спонтанные переходы 3®1 (они незначительны), либо наиболее вероятные безызлучательные переходы на уровень 2 (он называется метастабильным) с передачей избытка энергии решетке кристалла рубина. Переход 2®1 запрещен правилами отбора, поэтому длительность возбужденного состояния 2 атомов хрома порядка 10-3 с, т.е. примерно на четыре порядка больше, чем для состояния 3. Это приводит к «накоплению» атомов хрома на уровне 2. При достаточной мощности накачки их концентрация на уровне 2 будет гораздо больше, чем на уровне 1, т. е. возникает среда с инверсной населенностью уровня 2.

Рубиновый стержень лазера представлял собой цилиндр, торцы которого были тщательно отполированы и покрыты слоем серебра таким образом, что один торец полностью отражал свет, а другой – частично отражал и частично пропускал свет. При вспышке лампы накачки в рубиновый стержень попадают фотоны различных час­тот. Атомы хрома, поглотив часть фотонов определенной энергии, пере­ходят в возбужденное состояние. За счет ограниченных спонтанных пе­реходов в стержне может возникнуть вынужденное излучение, распро­страняющееся строго вдоль его оси и усиливающееся при многократных отражениях от торцовых зеркал, которые выполняют роль объемного резонатора. В результате возникает мощное монохроматическое излуче­ние – световой импульс, часть которого выходит через полупрозрачное зеркало. Длительность такого импульса 10–3 с. Это связано с тем, что все возбужденные ионы хрома за это время переходят в невозбужденное со­стояние. Световой луч лазера строго направлен и обладает малой расхо­димостью. Объемный резонатор лазера служит для создания положи­тельной обратной связи и для формирования геометрических параметров выходного луча лазера.

Не вся энергия, поглощенная рубиновым стержнем, превращается в лазерное излучение. Часть ее, довольно значительная (»50%), тратится на нагревание стержня, поэтому в конструкции лазера предусмотрено охла­ждение 3. При температуре стержня порядка 1000 К рубиновый лазер разрушается.

Существует большое количество лазерных материалов: стекло, в которое введены ионы неодима, флюорит кальция с иона ми самария и др. Они дают световое излуче­ние различных длин волн: рубиновый лазер – 0,694 мкм, лазер на стекле с неодимом – 1,06 мкм (инфракрасное излучение). В лазерах в качестве активной среды могут быть использованы газы или смеси газов (Ne, Ar, Ne–Не, СО2 и др.). В газовых лазерах атомы активной среды часто возбуж­дают высокочастотным разрядом. Как правило, излучение газовых лазе­ров непрерывно. Созданы полупроводниковые, химические, газодинами­ческие и другие лазеры.

Лазерное излучение обладает следующими свойствами:

1) временная и пространственная когерентность;

2) строгая монохроматичность;

3) большая плотность потока энергии;

4) очень малое угловое расхождение в пучке.

Необычные свойства лазерного излучения нашли широкое применение. Например, в светолучевых станках с помощью лазерного луча делают отверстия в часовых камнях из рубина, алмаза, в тугоплавких сплавах и труднообрабатываемых металлах. В микроэлектронике с помо­щью лазеров производят сварку различных соединений для микросхем, напыляют полупроводниковые слои и т.д.

 

IV. ФИЗИКА АТОМНОГО ЯДРА

 

Date: 2015-05-19; view: 672; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию