Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Машины точных измерений и открытий





Физика элементарных частиц, которая изучает самые крошечные объекты в природе, нуждается в гигантских исследовательских установках, где эти частицы ускоряются, сталкиваются, распадаются. Самые мощные из них – коллайдеры.

Коллайдер — это ускоритель со встречными пучками частиц, в котором частицы сталкиваются «лоб в лоб», например, электроны и позитроны в е+е-коллайдерах. До настоящего времени были созданы также протон-антипротонные, протон-протонные, электрон-протонные и ядро-ядерные (или тяжелоионные) коллайдеры. Остальные возможности, например, μ+μ-коллайдер, пока только обсуждаются. Основными коллайдерами для физики элементарных частиц служат протон-антипротонные, протон-протонные и электрон-позитронные.

Большой адронный коллайдер (LHC) — протон-протонный, он ускоряет два пучка протонов один навстречу другому (может также работать и как тяжелоионный коллайдер). Проектная энергия протонов в каждом из пучков составляет 7 ТэВ, так что полная энергия столкновения — 14 ТэВ. В 2011 году коллайдер работал на половине этой энергии, а в 2012 году — на полной энергии 8 ТэВ. Большой адронный коллайдер представляет собой кольцо длиной 27 км, в котором протоны ускоряют электрические поля, а удерживают поля, созданные сверхпроводящими магнитами. Столкновения протонов происходят в четырёх местах, где расположены детекторы, регистрирующие частицы, рождающиеся в столкновениях. ATLAS и CMS предназначены для исследований в области физики элементарных частиц высокой энергии; LHC-b — для изучения частиц, в составе которых имеются b-кварки, а ALICE — для исследований горячей и плотной кварк-глюонной материи.

Spp̃S — протон-антипротонный коллайдер в ЦЕРНе. Длина кольца 6,9 км, максимальная энергия столкновения 630 ГэВ. Работал с 1981 по 1990 год.

LEP — кольцевой электрон-позитронный коллайдер с максимальной энергией столкновения 209 ГэВ, расположенный в том же туннеле, что и LHC. Работал с 1989 по 2000 год.

SLC — линейный электрон-позитронный коллайдер в SLAC, США. Энергия столкновения 91 ГэВ (масса Z-бозона). Работал с 1989 по 1998 год.

Tevatron — кольцевой протон-антипротонный коллайдер в Fermilab, США. Длина кольца 6 км, максимальная энергия столкновения 2 ТэВ. Работал с 1987 по 2011 год.

Сравнивая протон-протонные и протон-антипротонные коллайдеры с электрон-позитронными, нужно иметь в виду, что протон — составная частица, он содержит в себе кварки и глюоны. Каждый из этих кварков и глюонов несёт лишь часть энергии протона. Поэтому в Большом адронном коллайдере, например, энергия элементарного столкновения (между двумя кварками, между двумя глюонами или кварка с глюоном) заметно ниже суммарной энергии сталкивающихся протонов (14 ТэВ при проектных параметрах). Из-за этого область энергий, доступных для изучения на нём, достигает «всего» 2—4 ТэВ, в зависимости от изучаемого процесса. Такой особенности у электрон-позитронных коллайдеров нет: электрон – элементарная, бесструктурная частица.

Преимущество протон-протонных (и протон-антипротонных) коллайдеров в том, что даже с учётом этой особенности достичь высоких энергий столкновений на них технически проще, чем на электрон-позитронных. Есть и минус. Из-за составной структуры протона, а также из-за того, что кварки и глюоны взаимодействуют между собой гораздо сильнее, чем электроны с позитронами, в столкновениях протонов происходит гораздо больше событий, не интересных с точки зрения поиска бозона Хиггса или других новых частиц и явлений. Интересные же события выглядят в протонных столкновениях более «грязными», в них рождается много «посторонних», неинтересных частиц. Всё это создаёт «шум», выделить из которого полезный сигнал сложнее, чем на электрон-позитронных коллайдерах. Соответственно ниже и точность измерений. Из-за всего этого протон-протонные (и протон-антипротонные) коллайдеры называют машинами открытий, а электрон-позитронные — машинами точных измерений.

***

Стандартное отклонение (среднеквадратичное отклонение) σх – характеристика случайных отклонений измеренной величины от среднего значения. Вероятность того, что измеренное значение величины X случайным образом окажется отличающимся на 5σх от истинного, составляет всего 0,00006%. Именно поэтому в физике элементарных частиц отклонение сигнала от фона на 5σ считают достаточным для признания сигнала истинным.

***

Частицы, перечисленные в Стандартной модели, кроме протона, электрона, нейтрино и их античастиц, нестабильны: они распадаются на другие частицы. Впрочем, два типа нейтрино из трёх тоже должны быть нестабильными, но их время жизни чрезвычайно велико. В физике микромира действует принцип: всё, что может происходить, действительно происходит. Поэтому стабильность частицы связана с каким-то законом сохранения. Электрону и позитрону запрещает распадаться закон сохранения заряда. Легчайшее нейтрино (спин 1/2) не распадается из-за сохранения углового момента. Распад протона запрещён законом сохранения ещё одного «заряда», который называют барионным числом (барионное число протона по определению равно 1, а более лёгких частиц — нулю).

С барионным числом связана ещё одна внутренняя симметрия. Точная она или приближённая, стабилен ли протон или имеет конечное, хотя и очень большое время жизни — предмет отдельного разговора.

***

Кварки — один из типов элементарных частиц. В свободном состоянии они не наблюдаются, а всегда связаны друг с другом и образуют составные частицы — адроны. Единственное исключение — t-кварк, он распадается, не успев объединиться с другими кварками или антикварками в адрон. К адронам относятся протон, нейтрон, π-мезоны, К-мезоны и др.

b-кварк — один из шести типов кварков, второй по массе после t-кварка.

Мюон — тяжёлый нестабильный аналог электрона с массой mμ = 106 МэВ. Время жизни мюона Тμ = 2·10–6 секунды достаточно велико для того, чтобы он пролетал через весь детектор, не распадаясь.

***

Виртуальная частица отличается от реальной тем, что для реальной частицы выполняется обычное релятивистское соотношение между энергией и импульсом Е2 = р2с2 + m2с4, а для виртуальной не выполняется. Такое возможно благодаря квантово-механическому соотношению ΔE·Δt ~ ħ между неопределённостью энергии ΔЕ и длительностью процесса Δt. Поэтому виртуальная частица почти мгновенно распадается или аннигилирует с другой (её время жизни Δt очень мало), а реальная живёт заметно дольше или вообще стабильна.

***

Лэмбовский сдвиг уровней — небольшое отклонение тонкой структуры уровней атома водорода и водородоподобных атомов под действием испускания и поглощения ими виртуальных фотонов или виртуального рождения и аннигиляции электрон-позитронных пар. Эффект обнаружили в 1947 году американские физики У. Лэмб и Р. Резерфорд.

Date: 2015-05-19; view: 315; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию