Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Термоэлектрический эффект





Термоэлектрический эффект также возникает при контакте двух разнородных металлов. При различной температуре мест контакта (Т 1 и T 2)
в замкнутой цепи из двух металлов возникает термоэлектрический ток (рис. 6.1), т. е. если цепь разорвать в произвольном месте, то на концах цепи появится термоЭДС. По имени первооткрывателя это явление получило название эффекта Зеебека.

а б

Рис. 6.1. Иллюстрация термоэлектрического эффекта:

а – общий случай; б – термопара

 

На некотором температурном интервале термоЭДС ε прямо пропорциональна разности температур контактов (спаев):

(6.1)

где аT – коэффициент, характеризующий дифференциальную удельную термоЭДС, зависящий от природы контактирующих проводников и температуры Т 1 и Т 2.

Эта термоЭДС объясняется тремя причинами.

Первая из них обусловлена температурной зависимостью контактной разности потенциалов, так как в металлах с увеличением температуры уровень Ферми уменьшаеться. Следовательно, на холодном конце проводников он будет выше, чем на горячем, вследствие этого равновесие нарушается и возникает контактная составляющая термоЭДС.

Вторая составляющая термоЭДС обусловлена диффузией носителей заряда от горячих спаев к холодным, так как средняя энергия электронов
в металле изменяется от температуры. Тогда электроны, сосредоточенные на горячем конце, будут обладать большей кинетической энергией и боль­шей скоростью движения по сравнению с электронами холодного конца. Следовательно, они будут диффундировать в направлении от горячего конца к холодному.

Третья составляющая термоЭДС возникает в контуре вследствие увлечения электронов квантами тепловой энергии (фононами). Их поток также распространяется к холодному концу.

Следует отметить, что термоэлектрический эффект является обратимым. То есть, если через цепь, состоящую из двух различных проводников, пропустить электрический ток, то тепло будет выделяться в одном контакте и поглощаться в другом.

Обратный эффект был открыт Жаном Пельтье и назван его именем. Теплота Пельтье связана с силой тока линейной зависимостью в отличие от теплоты Джоуля. При этом нагревание или охлаждение спая определяется направлением тока.

Термоэлектрический эффект положен в основу работы термоэлементов (термопар), преобразующих тепловую энергию в электрическую. Термопары получили широкое распространение в измерительной технике для измерения температур.

С точки зрения практического использования милливольтметр к термопаре подключается в соответствии с рис. 6.1, б. Такое включение позволяет иметь только одно место спая разнородных металлов, которое является рецептором температуры в измеряемой точке, а второй контакт (холодный) металлов обеспечивается через измерительный прибор. Очевидно, что для однозначности преобразования тепловой энергии в электрическую, согласно выражению (6.1), необходимо обеспечить стабилизацию температуры холодного контакта.

Следует отметить, что в соответствии с представленными объяснениями причин возникновения термоЭДС в однородном проводнике, т. е. изготовленном из одного металла, при наличии градиента температуры
на концах его также возникает разность потенциалов. Ее значение, отнесенное к единичной разности температур на концах проводника, называется абсолютной удельной термоЭДС. Следовательно, в термопаре дифференциальная удельная термоЭДС aT представляет собой разность абсолютных удельных термоЭДС составляющих ее проводников:

(6.2)

где и – абсолютные удельные термоЭДС контактирующих металлов А и В.

Из выражения (6.2) следует, что если известно абсолютное значение удельной термоЭДС одного материала, принятого в качестве эталона,
то для любого другого материала этот параметр легко получить экспериментально с помощью измерений относительно этого эталона. Для определения абсолютных термоЭДС в качестве эталона, как правило, используется свинец, у которого термоэлектрические свойства выражены очень слабо. Знак термоЭДС считается отрицательным, если горячий конец проводника заряжается положительно. Численные значения абсолютной удельной термоЭДС для различных металлов и сплавов приводятся в справочной литературе.

 

Date: 2015-05-08; view: 780; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию