Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Оптроны-применяются для связи отдельных частей электронных устройств, когда необходима их гальваническая развязка





 

По исходному полупроводниковому материалу диоды делят на три группы: германиевые, кремневые и из арсенида галлия.

По конструктивно-технологическому признаку различают диоды точечные и плоскосные. Точечные и плоскосные диоды, кроме того, имеют разные конструкции, имеют разные характеристики, параметры и отличаются поведением в электрических цепях.

 

 

10.

Интегральная микросхема – это конструктивно законченное микроэлектронное изделие, выполняющее определенную функцию преобразования информации, содержащее некоторое количество электрически связанных между собой электрорадиоэлементов (транзисторов, диодов, конденсаторов, резисторов и т.д.), изготовленных в едином технологическом цикле. Микросхемы изготавливают групповым методом по материалосберигающей технологии, тиражирую одновременно в одной партии от нескольких десятков до нескольких десятков тысяч микросхем. По конструктивно–технологическому принципу микросхемы делятся на три группы: полупроводниковые, пленочные и гибридные.

 

В полупроводниковой интегральной микросхеме все элементы и межэлементные соединения выполняются в объеме и на поверхности полупроводниковой подложки.

В пленочной интегральной микросхеме все элементы и соединения между ними выполняются в виде пленок. В настоящее время методом пленочной технологии изготавливают только пассивные элементы – резисторы, конденсаторы и индуктивности. В зависимости от толщины пленки и способа создания элементов пленочные микросхемы делят на тонко – и толстопленочные. К первому типу относятся микросхемы толщина пленки в которых не превышает 1 мкм, а толщина пленки в толстопленочной микросхеме составляет 10…70 мкм.

В гибридных интегральных схемах в качестве активных элементов используются навесные дискретные полупроводниковые приборы или полупроводниковые интегральные микросхемы, а в качестве пассивных элементов используют пленочные резисторы, конденсаторы, индуктивности и соединяющие их пленочные проводники.

По функциональному назначению микросхемы подразделяются на аналоговые и цифровые. Если микросхема предназначена для преобразования и обработки сигналов, изменяющихся по закону дискретных функций, то она называется цифровой (логической). К аналоговым относятся микросхемы, предназначенные для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции. В частном случае аналоговые микросхемы для преобразования и обработки сигналов, изменяющегося линейно, называют линейными.

транзистор (от англ. transfer — переносить и resistor — сопротивление), электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрических колебаний. Изобретён в 1948 У. Шокли, У. Браттейном и Дж. Бардином (Нобелевская премия, 1956). Транзистор составляют два основных крупных класса: униполярные транзисторы и биполярные транзисторы.
В униполярных транзисторах протекание тока через кристалл обусловлено носителями заряда только одного знака — электронами или дырками.
В биполярных транзисторах (которые обычно называют просто транзисторами) ток через кристалл обусловлен движением носителей заряда обоих знаков. Такой транзистор представляет собой монокристаллическую полупроводниковую пластину, в которой с помощью особых технологических приёмов созданы 3 области с разной проводимостью: дырочной (p) и электронной (n). В зависимости от порядка их чередования различают транзисторы p—n—p-типа и n—p—n-типа. Средняя область (её обычно делают очень тонкой) — порядка нескольких мкм, называется базой, две другие — эмиттером и коллектором. База отделена от эмиттера и коллектора электронно-дырочными переходами (р—n-переходами): эмиттерным (ЭП) и коллекторным (КП). От базы, эмиттера и коллектора сделаны металлические выводы.

бывают двух типов: NPN и PNP. обозначают порядок наложения эдаких бутербродных слоев или - в нашем случае - pn-переходов в полупроводниковом материале, из которого и состоит транзистор.

Биполярный транзистор n–p–n типа является ключевым элементом полупроводниковых микросхем. Остальные элементы микросхемы выбираются и конструируются таким образом, чтобы они совмещались с основной структурой. Их изготавливают одновременно с созданием n–p–n транзистора на основе какой либо из его областей. Такими образом, выбор физической структуры транзистора однозначно определяет основные электрические параметры микросхемы.

p–n–p Такой тип биполярного транзистора главным образом используются как нагрузочные приборы для n–p–n переключательных транзисторов. Все существующие варианты интегральных p–n–p транзисторов существенно уступают n–p–n транзисторам по коэффициенту усиления и придельной частоте. Для их изготовления используется стандартная технология, оптимизированная для формирования n+–p–n транзистора.

В качестве полупроводниковых материалов для изготовления транзисторов используют преимущественно германий и кремний.

 

 

Рис. 5 Схемы включения транзисторов.

 

4.

Сопротивления в цепи переменного тока


В цепях переменного тока выделяют следующие виды сопротивлений.

Активное. Активным называют сопротивление резистора. Условное обозначение

Единицей измерения сопротивления является Ом. Сопротивление резистора не зависит от частоты.

Реактивное. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления выше была получена формула XL = ωL. Единицей измерения индуктивного сопротивления также является Ом. Величина xL линейно зависит от частоты.

Для емкостного сопротивления выше была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL - XC.

^ Полное сопротивление. Полным сопротивлением цепи называют величину
.

Date: 2015-05-08; view: 1389; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию