Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Глава 3. Упругие свойства минералов и горных пород





 

3.1. Упругие параметры физических тел

 

Упругость – свойство вещества оказывать влияющей на него силе механическое сопротивление и принимать после её спада исходную форму. Противоположность упругости называется пластичность /1,4,6,8/.

Упругость тел – одна из основных физических констант, связанная с внутренним строением вещества.

Упругость характеризует свойство веществ сопротивляться изменению их объема и формы (твердые тела) или только объема (жидкости, газы) под воздействием механических напряжений, что обуславливается возрастанием внутренней энергии веществ.

При упругих деформациях вещество восстанавливает свои первоначальные объем и форму после прекращения действия сил, вызывающих их деформацию. Количественными характеристиками упругих свойств являются модули упругости. В простейших случаях малых деформаций зависимость линейная – и действует закон Гука, на котором основана теория упругости. Согласно этой теории малые деформации пропорциональны приложенной нагрузке:

(3.1, 3.2 )

где Δl/l и Δd/d –относительная продольная и поперечная деформация; - приложенная к телу нагрузка в кг, S – площадь поперечного сечения тела в м2; /S – напряжение.

1) модуль Юнга E (модуль продольной упругости) – это отношение нормального напряжения к относительному удлинению, вызванному этим напряжением в направлении его действия. Модуль Юнга характеризует способность тел сопротивляться деформации растяжения или сжатия: , (3.3)

где p – нормальное растяжение, - относительное удлинение.

Единица измерения модуля Юнга в системе СИ: Па (паскаль), в системе СГС дин/см2.

2) коэффициент Пуассона σП (коэффициент поперечного сжатия) – отношение поперечного сжатия тела при одноосном растяжении к продольному удлинению. Коэффициент Пуассона равен абсолютному значению отношения относительной поперечной деформации тела к относительной продольной деформации:

, , (3.4, 3.5)

где εx , εy , εz – деформации по соответствующим осям.

В твердых породах коэффициент Пуассона изменяется от 0,1- до 0,4. Чем больше значение коэффициента Пуассона, тем больше порода может деформироваться. Более однородные по минеральному составу породу характеризуются более низкими значениями коэффициента Пуассона.

3) константы Ламе λ:

, (3.6)

где K модуль объемного сжатия.

 

4) модуль сдвига G. Модуль сдвига определяет способность тел сопротивляться изменению формы при сохранении их объема:

, (3.7)

где r – касательное напряжение; α – угол сдвига.

Модуль сдвига численно равен другой константе Ламе:

(3.8)

Возникающие в телах под действием механического напряжения деформации имеют различный характер и вызывает разные по природе деформации растяжения – сжатия, поперечные – деформации сдвига. Скорость упругих волн равна отношению длины пути соответствующей волны к времени пробега этого пути:

; (3.9, 3.10)

Для геофизиков большое значение имеют скорости, которые связаны с модулями упругости и плотностью.

Скорость продольных упругих волн или упругих колебаний, возникающих вследствие деформаций растяжение-сжатие в любой среде:

(3.11)

Скорость поперечных волн или упругих колебаний, возникающих вследствие деформаций сдвига в твердой среде:

(3.12)

Скорости vp и vs в принципе независимые величины. Связь между ними осуществляется через коэффициент Пуассона:

(3.13)

 

При сейсморазведочных работах вычисляют ряд скоростных параметров разреза: граничную, пластовую, среднюю, эффективную и лучевую скорости.

Распространение упругих колебаний сопровождается затуханием их амплитуды по мере удаления от источника. Амплитуда A гармонической волны с частотой w убывает с расстоянием l в однородной поглощающей среде по закону:

 

, (3.14)

где A0 – амплитуда волны в некоторой фиксированной (начальной) точке; n - показатель расхождения фронта волны; α – коэффициент поглощения.

Коэффициент поглощения измеряется м-1. Коэффициент поглощения упругих колебаний зависит от свойств среды. Чем ниже скорость распространения упругих колебаний в породе, тем выше значение коэффициента поглощения. С увеличением пористости коэффициент поглощения растет.

 

3.2. Скорость упругих волн и упругие модули химических элементов и минералов

 

По упругим характеристикам химические элементы весьма неоднородны. В упругой характеристике элементов играют роль их электронная оболочка, которая является упругой средой, и ядра атомов, обладающие различной массой. Данные о скорости распространения продольных упругих волн в элементах были получены экспериментально или рассчитаны по модулям упругости.

Наблюдается корреляция с плотностью и атомными радиусами в пределах периода. Скорость увеличивается в элементах первой половины каждого периода и уменьшается в элементах второй половины каждого периода. Наибольшая зависимость скорости от атомного радиуса установлена у sp-элементов с большим размерами атомов. Зависимость скорости у sp-элементов от атомной массы – незначительна. Для d-элементов скорость в основном определяется атомной массой вещества. Скорость уменьшается при увеличении массы вещества. Это справедливо и для скоростей продольных волн и для скоростей поперечных волн. Поскольку они связаны соотношением .

Упругие модули в элементах изменяются, как и скорости продольны волн, в зависимости от величины атомного радиуса элемента и его атомной массы.

Упругие свойства минералов определяются характеристиками их внутреннего строения. Наиболее информативной характеристикой является плотность упаковки атомов ω в единице объема вещества. Параметр ω обратно пропорционален атомному радиусу. Чем больше плотность упаковки, тем меньше атомный радиус. Значение параметра вычисляется по формуле (Н.З.Евзикова, Ю.В.Казицин, В.А. Рудник):

. (3.15)

Скорость упругих волн увеличивается с ростом плотности упаковки и уменьшается с ростом средней атомной массы, являющейся мерой инерционности вещества.

Скорость продольных волн в минералах изменяется от 2000 до 18000 м/с, поперечных от 1100 до 10000 м/с. Низкие скорости характерны для самородных металлов (золото, платина), высокие – для алюмосиликатных и окисных безжелезистых минералов (топаз, шпинель, корунд), наибольшая скорость упругих волн установлена в алмазе.

Характер изменения скорости упругих волн в элементах, минералах и горных породах имеет два типа связи между скоростью продольных волн и плотностью твердых образований: ; .

К первому типу относятся большинство твердых петрогенных элементов и породообразующие минералы (силикатные и частично окисные), состоящие преимущественно из элементов со структурой типа sp. Скорость упругих волн и плотность этих элементов в значительной степени зависят от плотности упаковки атомов в кристалле и его структуры. Плотность минералов первого типа составляет 0,5-4,5 г/см3, то есть они относятся к минералам с малой и средней плотностью. Скорость продольных волн изменяется от 1км/с до 18 км/с. Для минералов первого типа по мере возрастания плотности минералов наблюдается увеличение скорости упругих волн, то есть прямая зависимость, несмотря на то, что плотность в формуле (3.11) входит в знаменатель. Это как будто противоречит рассматриваемым формулам.

Уравнение связи между σ и vP в образованиях первого типа имеет вид:

 

, (3.16)

где vp0=6 км/с.

По мере возрастания плотности минералов наблюдается еще большее увеличение модуля Юнга и модуля сдвига. Это возрастание параметров связано, главным образом, с увеличением плотности упаковки атомов ω в кристаллах. Для породообразующих минералов ω изменяется от 72 до 94, а в алмазе достигает 176. В результате происходит увеличение скоростей. Для коэффициента Пуассона закономерных изменений не наблюдаются. Однако в формулы, определяющие скорости продольных и поперечных волн величина коэффициента Пуассона входит таким образом, что даже небольшие его вариации сильно сказываются на значения vP и vS . Наименьшие значения коэффициента Пуассона характерно для кварца (0,05-0,10). Пониженные значения σП свойственны гематиту и пириту ( в среднем 0,15).

Ко второму типу относятся тяжелые металлы, сульфиды, окисные рудные минералы и самородные металлы, состоящие преимущественно из элементов со структурой типа d. В этих элементах и минералах существенное слияние на физические параметры оказывает атомная масса. Модуль Юнга и модуль сдвига, скорость упругих волн уменьшается с ростом плотности. В минералах второго типа наблюдается некоторое уменьшение плотности упаковки атомов в веществе и значительное увеличение их средней атомной массы (от 20 до 200 а.е.м).

Таким образом, наиболее информативными характеристиками для определения упругих свойств элементов являются плотность упаковки и атомная масса. В общем виде зависимость скорости упругих волн может быть представлена выражением: (3.17).

 

3.3 Скорости упругих волн в магматических и метаморфических породах.

 

Упругие характеристики магматических и метаморфических пород определяются в значительной мере:

· химическим и минеральным составом;

· текстурно-структурными особенностями;

· характером порового заполнителя.

 

Основными химическими компонентами горных пород являются окислы кремния, калия, натрия, алюминия, кальция, магния и железа. Наименьшей скоростью упругих волн характеризуются породы, обогащение такими легкими окислами, как окислы кремния, калия, натрия. С уменьшением их содержания в породах возрастает содержание окислов кальция, магния, железа. Для ассоциаций горных пород, сложенных малоупругими минералами кислого состава (кварц, калиевой полевой шпат, альбит, олигоклаз), характерны минимальные скорости упругих волн. Максимальными скоростями обладают горные породы, представленные высокоупругими минералами основного состава (лабрадор, амфибол, пироксен, оливин). Таким образом, скорость упругих волн увеличивается с увеличением основности. То есть в ряду гранит-габбро-перидотит наблюдается возрастание средней скорости продольных и поперечных волн с ростом основности.

Однако следует заметить, что на упругие свойства горных пород воздействует множество факторов и не существует однозначной связи между геологическим определением породы и ее скоростной характеристикой. Породы сложенные одними и теми же минеральными ассоциациями могут отличаться по своим скоростям, так же как и совершенно разные породы могут иметь одинаковые значения скоростей. Поэтому обычно указываются пределы вероятных скоростей.

Наиболее часто встречающиеся в магматических породах величины VP и VS составляют соответственно: гранитоидах 5,4-6,1 км/с и 2,9-3,5 км/с, в диоритах 6,1-6,2 и 3,4-3,7 км/с, анортозитах и габброидах 6-7,2 км/с и 3,5-4,1 км/с, в гипербазитах 7,4-8,2 км/с и 4-4,6 км/с; то же в метаморфических породах: в разнообразных гнейсах 5,6-5,9 км/с и 2,7-3,7км/с, в разнообразных амфиболитах 6,2-6,8 км/с и 3,6-4 км/с, в гранулитах среднего и основного состава 6,2-6,8 км/с, в эклогитах 7,2-7,8 км/с и 4,1-4,4 км/с.

Для эффузивных пород характерен широкий диапазон значений скоростей, обусловленный различной пористостью, первоначальной структуры пород и их последующим диагенезом.

Для метаморфических пород в целом также наблюдается зависимость скорости упругих волн от минерального состава основности пород. При региональном метаморфизме скорость упругих волн возрастает от низших стадий метаморфизма к высшим за счет уплотнения пород. Причем, в кислых породах скорость упругих колебаний увеличивается на 3-5%, у пород основного состава возрастание скорости может достигать 15-25 %.

Автометаморфизм приводит к снижению скорости упругих колебаний. Процесс серпентинизации сопровождается разложением высокоупругого оливина с образованием структурно-рыхлого серпентина. Скорость снижается с 8,2 км/с до 5,5 км/с. При амфиболизации габбро-норитов и гипербазитов образуется амфиболы плагиоклазы, структурно-рыхлые хлориты, серициты, эпидоты, что также уменьшает скорость продольных волн. В неизмененных гипербазитах скорость продольных волн достигает 8,2 км/с. Скорость амфиболизированных гипербазитов равна 7,6км/с.

Процессы ультраметаморфизма приводят к уменьшению скорости упругих волн. Величина скорости продольных волн при чарнокитизации и гранитизации уменьшается до 5,5-6 км/с.

Существенное влияние на скоростные характеристики оказывают гипергенные процессы, приводящие к росту трещиноватости и образованию структурно-рыхлых минералов. Породы кислого состава в большей степени подвержены процессам выветривания. Уменьшение скорости упругих волн может при этом достигать 200-300%.

Анизотропия упругих свойств магматических и метаморфических пород обусловлена закономерных расположением порового пространства и минеральных зерен, а также кристаллической решеткой минералов. Значения скорости распространения продольных волн вдоль слоистости выше, чем измеренные перпендикулярно направлению слоистости. Коэффициент анизотропии для продольных волн достигает значений 1,2-1,3 и обычно превышает значение анизотропии для поперечных волн. Изверженные породы с массивной структурой характеризуются слабой анизотропией. Значение коэффициента анизотропии составляет 1,0-1,06. Наибольшие значения коэффициентов анизотропии наблюдаются в метаморфических породах, обладающих гнейсовидной и сланцевой текстурой. В частности биотитовые и биотит-амфиболовые гнейсы характеризуются значениями коэффициентов анизотропии 1,02-1,19, а высокоглиноземные гнейсы 1,04-1,23.

Скорости продольных волн в уплотненных осадочных породах (метаморфизованные песчаники, кристаллические известняки, доломиты) практически не отличается от скорости продольных волн, измеренных в магматических и метаморфических породах при одной и той же плотности.

В магматических и метаморфических образованиях наблюдается четко выраженная положительная корреляционная связь между скоростью продольных и поперечных волн и плотностью пород. Для большинства кристаллических образований характерна плотность 2,5-3г/см3. Рядом исследователей установлено, что зависимость между vP и σ близка к линейной. При изменении плотности пород на 0,1 г/см3 скорость изменяется в среднем на 0,25 км/с (если ), в более плотных породах изменение скорости значительнее.

3.4. Скорости упругих волн в осадочных породах.

 

Упругие свойства осадочных пород определяются составом, пористостью, диагенезом пород и свойствами порового заполнителя. В общем случае скорость продольных волн в осадочных породах изменяется от 0,3 до 6,9 км/с. Отношение vP/vS различна у различных пород: в глине 0,07-0,6, в лессе 0,3-0,6, в песке 0,1-0,3. Модуль Юнга изменяется от 3 ГПа в глине до 165 ГПа в доломите. Коэффициент Пуассона изменяется в пределах 0,1-0,45.

Максимальные скорости упругих волн и модулей упругости отмечаются в уплотненных карбонатных породах, меньше величины этих параметров наблюдаются в уплотненных песчано-глинистых и гидрохимических образованиях. Зависимость между vP и σ для осадочных пород выведена М.Л.Озерской (1965):

, (3.18)

По предложенному выражению составлены палетки со значениями vPmin, vPmax, σmax.

В значительной мере определяет скорость упругих волн в осадочных породах - пористость. Пористость может изменяться от 0 до 50%. С увеличением пористости породы сейсмические скорости в ней уменьшаются. Особенно эта закономерность справедлива для терригенных отложений, у которых величина пористости может достигать 30-40%.

При пористости 1-2% скорости упругих волн в осадочных породах близки к скоростям в магматических и метаморфических породах кислого состава. В ряде случаев скорости упругих волн в доломитах сравнима со скоростями в габброидах.

Существует ряд теоретических и экспериментальных зависимостей, позволяющих оценить влияние пористости, трещиноватости, типа заполнителя пустот в породах на скорость продольных волн. Широко применяется уравнение «среднего времени», связывающего время распространения волны в объеме распространения волны в заполнителе порового пространства и минеральном скелете:

, (3.20)

 

где VP, VPз, VPт, - скорости распространения продольных волн соответственно в пористой (трещиноватой) породе, в заполнителе пустот и в твердой фазе породы; kп – коэффициент общей пористости.

Осадочные породы – преимущественно анизотропные среды. Анизотропия скоростей упругих волн обуславливается слоистостью и направлением трещиноватости пород. Особенно ярко выражено явление анизотропии для образований с тонким переслаиванием в них глинистых пород. Коэффициент анизотропии продольных волн в этих случаях может достигать 1,2-1,3.

Фактором, влияющим на скорость упругих волн в осадочных породах, является тип заполняющего породу флюида. Насыщение порового пространства среды жидкостью, химически не взаимодействующей с минеральным скелетов породы, обуславливает увеличение скорости упругих волн. При насыщении песчаников и алевролитов раствором соли NaCl не приводящим к большому эффекту размокания присутствующих в породе глинистых минералов, скорость продольных волн увеличивается с 5-10 до 100 –120%. Влияние насыщающей жидкости на скорость связано с пористостью породы, то количественно эффект насыщения пропорционален коэффициенту пористости породы.

Насыщение глин и глинистых песчаников водой приводит к разбуханию глинистых минералов, потере связанности породы и уменьшение скорости.

Резкое возрастание сейсмических скоростей в породе вызывает замерзание воды, находящиеся в порах, кавернах, трещинах. Так как скорость продольных волн во льду почти в 2,5 раза выше, чем в воде. Поэтому скорость может возрастать на 1- 2 км/с.

Скорость увеличивается с возрастом пород, глубиной залегания, степенью цементации. Увеличение скорости с глубиной происходит из-за роста горного давления. Поскольку уменьшается пористость пород, увеличивается модуль Юнга и, соответственно, увеличивается скорость продольных волн. Это явление наиболее выражено для терригенных пород, которые отличаются высокой начальной скоростью. В карбонатных отложениях это свойство проявляется слабо, и практически не заметно для хемогенных осадков.

Переход осадочных пород из газонасыщенного в водонасыщенное состояние сопровождается изменением упругих модулей. Модуль Юнга в низкопористых образцах увеличивается до 100-120%. Модуль сдвига может как увеличиваться (на 20-30%), так и уменьшаться (до 20%).

Экспериментально установлен рост процесса поглощения α с увеличением пористости пород. Установлен рост значений αP и αS с увеличением глинистости осадочных образований.

Скорость распространения сейсмических волн в нефти меньше, чем в воде и изменяется от 1300 до 1400 м/с. Нефть и газ оказывают определенное влияние на скорость и поглощение волн при прохождении их через залежь. Установлено, что скорость в нефтегазовых отложениях по сравнению со скоростью в водоносной части уменьшается в среднем на 0,5км/с (на 15-20%, в отдельных случаях может достигать и 30-35%). Среднее значение коэффициента поглощения в водоносной толще составляет первые единицы 10-3 м-1. В нефтегазовых залежах коэффициент поглощения достигают больших величин.

Большое значение имеют термодинамические условия залегания нефти и газа. С повышением температуры скорость распространения упругих волн уменьшается, причем наиболее ярко в нефтенасыщенных породах (до 30%) по сравнению с газо- и водонасыщенными. Увеличение давления (глубины), наоборот, ведет к повышению скорости.

 

3.5 Методы изучения упругих свойств

 

Методы измерения упругих свойств можно подразделить на две большие группы, относимые к измерениям в естественном залегании и в лабораторных условиях.

Упругие модули горных пород измеряются двумя методами: статическим (изотермические) и динамическим (адиабатические модули).

Статический метод применяется для определения:

· модуля Юнга при одноосном сжатии, растяжении и изгибе стержня из породы;

· модуля сдвига при кручении образца;

· коэффициента Пуассона при измерении продольных и поперечных деформаций при одноосном сжатии;

· модуля объемного сжатия при сжатии образца всесторонним давлении.

Во всех случаях измерение упругих параметров сводится к непосредственному измерению деформации сжимаемых образцов тензометрами различной конструкции.

С помощью динамического метода измеряют различные виды упругих волн в веществе и их затухание. Различают:

· динамический резонансный способ, где используют стоячие волны, возбуждаемые внешним источником на основной частоте;

· способ вращающей пластины на пути непрерывной упругой волны;

· способ последовательных ультразвуковых импульсов.

Для определения упругой характеристики горных пород в естественном залегании применяют вертикальное сейсмическое профилирование (ВСП), сейсмический каротаж (СК), акустический каротаж и полевые сейсмические методы. Ценные сведения о скоростных характеристиках дают сейсмические исследования методом преломленных и отраженных волн, особенно в районах, где общие черты геологического строения достаточно хорошо известны.

 

 

Контрольные вопросы к главе 3.

 

1. Как объяснить положительную корреляцию между плотностью среды и скоростью сейсмических волн в ней?

2. Какие параметры используют для характеристики упругих свойств горных пород?

3. Почему для осадочных пород характерно возрастание скоростей с глубиной их залегания?

 


Глава 4 Теплофизические свойства минералов и горных пород

 

4.1 Теплофизические параметры веществ и методы их измерения

 

Тепловое состояние земных недр является первопричиной многих геологических процессов. Его изучение включает теоретическое и экспериментальные исследования параметров теплового поля /4,6,8/.

Распределение температур на поверхности Земли и в ее недрах, то есть естественное тепловое поле Земли – определяется:

1. пространственным распределением и мощностью источников тепла. Этими источниками являются солнце, атмосферные осадки, радиоактивные элементы, химические реакции, кристаллизация, уплотнение и другие процессы.

2. способностью пород к теплообмену – передаче тепловой энергии;

3. пространственным распределением пород с различной теплопроводностью.

Теплопроводность– процесс распределения теплоты от более нагретых к менее нагретым объемам неравномернонагретого вещества, способствующий выравниванию температуры среды.

В 1822 году Жан Батист Фурье установил связь градиента температуры с плотностью теплового потока. Эта связь стала называться Законом Фурье, который формулируется, как количество переносимой энергии определяется как плотность теплового потока, пропорциональное градиенту температуры:

q=λ·grad T , (4.1)

где q – плотность теплового потока, grad T – температурный градиент, λ - коэффициент пропорциональности, названый коэффициентом теплопроводности или просто теплопроводность.

Иными словами теплопроводность λ – это физический параметр, характеризующий интенсивность процесса теплопроводности в веществе, численно равный плотности теплового потока q, при градиенте температуры grad T, равном единице. Формула коэффициента пропорциональности:

. (4.2)

Плотность теплового потока q - это вектор направленный в сторону, противоположную градиенту температуры и, численно равный количеству теплоты, проходящий через единицу площади изометрической поверхности в единицу времени.

Единица измерения теплопроводности в системе СИ Вт/(м·К), в системе СГС кал/(см·°С).

Теплоемкость – количество теплоты, которое необходимо подвести к телу, чтобы повысить его температуру на 1 К. Теплоемкость единицы массы вещества называется удельной теплоемкостью. Единица измерения в системе СИ Дж/кг·К, в системе СГС кал/г°С.

Формула:

c= Q/m (T2-T1), (4.3)

где Q – количество теплоты, m – масса тела; T2-T1 разность температур на которую изменилась температура тела массой m при проведении к нему количества теплоты Q.

Температуропроводность – это величина, характеризующая скорость изменения (выравнивания) температуры. Численно равна отношению теплопроводности к теплоемкости единицы объема вещества. Выражается в единицах м2/с. Вычисляется:

a=λ/cσ, (4.4)

где cσ – объемная теплоемкость.

Наиболее распространенный способ изучения термических свойств –метод стационарного режима и динамического разогрева. Термические свойства обычно определяется в лабораторных условиях. В полевых условиях с помощью термокаротажа измеряют температуру в скважинах. Зная термические параметры, изученные на образцах, и распределение температуры в вышестоящей скважине, можно определить тепловой поток

 

4.2.Теплофизические параметры элементов и минералов.

 

Тепловой режим земной коры зависит главным образом от теплопроводности минерального вещества. Самая высокая теплопроводность наблюдается у самородных элементов. Значения их λ мало отличаются от соответствующих чистых элементов. Наибольшее значение λ наблюдается у серебра и численно равна 418-420 Вт/(м·К). Высокая теплопроводность (до 30 Вт/(м·К)) наблюдается у золота, меди некоторых других самородных элементов, таких как графит (268-389 Вт/(м·К)), алмаз (121-163 Вт/(м·К)), за исключением серы (0,85 Вт/(м·К)). Высокая теплопроводность (от 100 до 200 Вт/(м·К)) наблюдается у минеральных соединений с металлами: алюминий, калий, натрий, магний, кальций.

Однако некоторые из самородных металлов, а также другие элементы, встречающиеся и не встречающиеся в свободном состоянии, имеют:

- средние [от 10 до 50 Вт/(м·К) для свинца, сурьмы, марганца, тория, урана, цинка];

- пониженные [от 1,5 до 10 Вт/(м·К) для ртути, висмута, кадмия];

- низкие [0,5 до 1,5 Вт/(м·К) для бора];

- очень низкие [<0,5 Вт/(м·К) для водорода, фтора, хлора, кислорода]

значения коэффициента теплопроводности (Кобранова В.Н., 1986).

Высокая теплопроводность самородных элементов связана с тем, что тепловая энергия в них передается через твердую фазу непосредственным соприкосновением молекул, атомов и ионов, находящихся в тепловом движении, или диффузией свободных электронов (в самородных металлах) (У.И. Моисеенко, «Петрофизика», 1992 г.).

Существует тесная связь между электропроводностью и теплопроводностью. Отношение считается примерно постоянным.

Присутствие в составе минералов элементов с высокой теплопроводностью (от 50 до 300 Вт/(м·К)) нередко повышает минеральную теплопроводность. Неодинаковая плотность упаковки тоже влияет на теплопроводность. Чем больше межатомное расстояние, тем меньше теплопроводность.

Большинство минералов, слагающих горные породы обладают значительно меньшей теплопроводностью. Теплопроводность породообразующих минералов изверженных пород ниже, чем акцессорных и рудных. Породообразующие минералы метаморфических пород (сподумен, андалузит, кианит и др) по сравнению с породообразующими минералами интрузивных образований имеют значительно большую теплопроводность.

Главнейшие изученные классы минералов по величине теплопроводности располагаются следующим образом в порядке убывания:

· самородные металлы, а также графит алмаз (>120 Вт/(м·К));

· сульфиды ( ~ 19 Вт/(м·К));

· окислы (~ 11,8 Вт/(м·К));

· галогениды (~ 6 Вт/(м·К));

· карбонаты (~ 4,0 Вт/(м·К));

· силикаты (~3,8 Вт/(м·К));

· сульфаты (3,3 Вт/(м·К));

· нитраты (2,1 Вт/(м·К));

· самородные неметаллы (~0,85 Вт/(м·К)).

Теплоемкость минералов изменяется от 0,125 до 2-4 кДж/кг·К и зависит, в основном от их состава и структуры.

По среднему значению теплоемкости основные классы минералов можно расположить в следующий ряд: самородные металлы (от 0,13-0,2 для Pt, Au, Bi, Pb до 0,35-0,45 для Cu, Fe, Zn) < сульфиды и их аналоги (от 0,21-0,22 для галенита, киновари до 0,5-0,6 для ковелина, вюрцита) < окислы (от 0,22-0,24 для лимонита, пиролюзита, уранита до 2-4 льда и воды) < сульфаты ( 0,35 для англезита) < карбонаты (1-1,5 для гипса, эпсомита) < силикаты ( от 0,5-0,6 для турмалина до 0,9-0,98 для сподумена, циркона) (Кобранова В.Н., 1986).

4.3.Теплофизические параметры горных пород

 

Тепловые свойства горных пород в значительной мере определяются особенностями их внутреннего строения:

· свойствами и соотношением слагающих минералов;

· соотношением различных фаз (твердой, жидкой и газообразной);

· текстурой породы, ее анизотропией;

· структурой порового пространства, формой и размерами пор;

· свойствами цемента.

Наличие в горных породах порового пространства, заполненного флюидом, резко снижает процент переноса тепла, складывающегося из кондуктивной теплопередачи внутри отдельной твердой частицы, в местах соприкосновения частиц.

Анализ данных показал, теплопроводность λ возрастает в ряду глины→ аргиллиты→ пески→ алевролиты→ известняки→ доломиты→ каменная соль. В этот ряд не входят песчаники. Диапазон изменения теплопроводности у песчаника очень большой.

Для интрузивных магматических пород наблюдается снижение теплопроводности в ряду ультраосновные→ основные → средние рост у сиенита, и гранита.

Метаморфические породы отличаются широкими пределами изменения коэффициента теплопроводности. Причем особенно они значительны у роговиков и кварцитов. Исключение составляют некоторые кристаллические сланцы серпентиниты и эклогиты.

Теплоемкость пород варьирует от 0,42 (известняк) до 4,65 (каменная соль) Дж/кг·К.

Для отдельных же групп пород теплоемкость изменяется следующим образом:

· от 0,42 до 4,65 Дж/кг·К (осадочные породы)

· от 0,45 до 2,13 Дж/кг·К (магматические породы)

· от 0,3 до 1,72 Дж/кг·К (метаморфические породы).

Наибольший диапазон теплоемкости среди осадочных пород имеют каменная соль, песчаники, мел, известняки и глины, а наиболее узкий – ангидриты, гипсы, аргиллиты. Для большинства осадочных пород вариации теплоемкости связаны с коэффициентом пористости и влажности. Чем больше их значения, тем выше теплоемкость. Вариации теплоемкости магматических и метаморфических пород также связаны с влажностью. Теплоемкость пород не зависят от их зернистости, слоистости, состояния (аморфности или кристалличности) минералов.

 

 

Контрольные вопросы к главе 4.

 

1. Чем объясняется высокая теплопроводность самородных элементов?

2. Какие факторы оказывают влияние на теплопроводность горных пород?

3. От чего зависит и от чего не зависит теплоемкость горных пород?

 


Глава 5. Магнитные свойства минералов и горных пород

5.1. Магнитные параметры физических тел

 

Магнетизм вещества связан с особенностями строения внешних и внутренних атомных орбит. По типу магнетизма выделяются диа- и парамагнитные химические элементы /4,6,8/.

В веществе, помещенном в магнитное поле, появляется внутреннее магнитное поле, которое накладывается на внешнее (намагничивающее). Напряженность суммарного магнитного поля (внешнего и внутреннего) называется магнитной индукцией. Магнитная индукция численно равна:

(5.1)

J –намагниченность вещества, которая является функцией внешнего поля.

Реакция вещества на приложенное магнитное поле характеризуется магнитной восприимчивостью æ:

, (5.2)

Магнитные свойства вещества обуславливаются главным образом магнитными моментами электронов. Одновременно с вращением электронов вокруг своей оси (спиновое движение) они (электроны) совершают также движение по орбите вокруг положительно заряженных ядер (орбитальное движение). Оба вида движения эквивалентны круговому току, создающему магнитный момент.

Внешнее магнитное поле взаимодействуют с магнитными полями атомов, в результате чего возникает дополнительный момент, либо совпадающий с направлением внешнего поля, либо противоположный ему (диамагнетики).

Восприимчивость диамагнитных веществ отрицательна, то есть наведенные магнитным полем магнитные моменты ослабляют его. Таким образом, диамагнетик, вещество обладающий отрицательной магнитной восприимчивостью (порядка –10-5÷-10-6). Диамагнетизм является наиболее универсальным магнитным свойством, присущим всем веществам. Физическая суть этого явления состоит в следующем. Под действием внешнего магнитного поля в замкнутом токовом контуре (орбите вращения электрона) возникает электродвижущая сила, порождающая дополнительный индукционный ток. Этот ток создает индукционный момент, направленный в соответствии с законом электромагнитной индукции противоположно внешнему магнитному полю, что проявляется в отрицательных значениях магнитной восприимчивости. Магнитная индукция B в диамагнетике меньше напряженности поля H. Однако ослабление поля незначительно. Поскольку индуцированный полем отрицательный магнитный момент значительно меньше орбитального или спинового момента электронов, явление диамагнетизма можно обнаружить лишь у тех атомов, у которых орбитальные и спиновые моменты взаимно скомпенсированы.

Восприимчивость парамагнитных веществ положительна, и магнитные моменты усиливают внешнее поле. Природа парамагнетизма заключается в ориентации элементарных магнитных моментов внешним магнитным полем: происходит ориентировка собственных магнитных моментов атомов. Поэтому рост намагниченности не прекращается даже в сильных полях. При выключении поля намагниченность парамагнетика исчезает.

Среди парамагнитных веществ выделяется особая группа веществ, называемая ферромагнитными. Вследствие особенности строения внутренних электронных орбит у веществ этой группы взаимодействие между атомами настолько велико, что магнитные моменты всех атомов даже при отсутствии внешнего магнитного поля располагаются параллельно друг другу и одинаково ориентированы. Это так называемая спонтанная намагниченность. То есть, обладают магнитным моментом даже при отсутствии внешнего магнитного поля. В высоких полях магнитное состояние ферромагнетиков изменяется путем постепенного вращения спонтанной намагниченности в направлении магнитного поля. При насыщении магнитные моменты располагаются параллельно магнитному полю. Изменение намагниченности при повышении напряженности внешнего магнитного поля графически изображают кривой намагничивания (рис.5.1). В малых полях намагниченность в основном обратима. В случае скачкообразного изменения намагниченности процесс необратим.

Рис. 5.1. Кривая намагничивания ферромагнетика

Необратимые процессы приводят к остаточным явлениям и сохранению в веществе некоторой части намагниченности при уменьшении внешнего поля до нуля.

Намагниченность, остающаяся и после уменьшения поля до нуля, получила название остаточной намагниченности.

Для приведения остаточной намагниченности ферромагнетика к нулю необходимо приложить некоторое обратное по направлению поле. Величина этого поля носит название коэрцитивной силы. Дальнейшее увеличение обратного магнитного поля снова приведет ферромагнетик в состояние магнитного насыщения. При уменьшении обратного поля весь цикл намагничивания повторяется. В результате образуется петля названная петлей гистерезиса.

Повышение температуры приводит к уменьшению спонтанной намагниченности. При определенной температуре, названной точкой Кюри, в ферромагнетике происходит ориентации спиновых моментов, и выше этой температуры ферромагнетик ведет себя как парамагнетик.

Существуют вещества, у которых энергетически более выгодно антипараллельное расположение спинов соседних атомов (отрицательное обменное взаимодействие). При параллельном расположении спинов (ферромагнетики) их магнитные моменты складываются, в то время как антипараллельное расположение (антиферромагнетики) дает результирующий момент равный нулю (рис5.2). Наконец, известны вещества, в которых при антиферромагнитном порядке атомных магнитных моментов их взаимной компенсации не происходит. Такие вещества получили название ферримагнетиков, и среди природных минералов они встречаются чаще, чем ферромагнетики. Во внешнем магнитном поле ферримагнетик намагничивается подобно ферромагнетики.

Рис 5.2. Схема ориентации атомных моментов, обусловленной обменными взаимодействием: I – ориентация моментов; II – результирующая спонтанная намагниченность решетки; а - ферромагнетик, б – антиферромагнетик, в – ферримагнетик, г – антиферромагнетик с некомпенсированным магнитным моментом.

Если рассматривать горные породы, то они характеризуются способностью изменять действующее на них магнитное поле или возбуждать собственное поле. Наиболее важными параметрами горных пород и руд являются магнитная восприимчивость æ и индуцированная и естественная намагниченность.

Магнитная восприимчивость характеризует способность вещества к намагничиванию. Появление магнитного момента тела сопровождается возникновением на его концах свободных магнитных полюсов, создающих магнитное поле внутри тела в противоположном внешнему полю направлении, т.е. размагничивающее поле. Это поле пропорционально намагниченности тела. Коэффициент пропорциональности (размагничивающий фактор N) определяется формой тела.

, (5.3)

где - кажущаяся магнитная восприимчивость, N – размагничивающий фактор, измеряющийся в системе СИ от нуля (для очень тонких вытянутых в направлении намагничивания тел) до 1 (для сжатых, пастообразных тел, намагничиваемых внешним полем перпендикулярно ограничивающим поверхностям). Для тел сферической формы .

Магнитная восприимчивость, отнесенная к единице массы вещества с плотностью σ, называется удельной (массовой) восприимчивостью:

(5.4)

Различают также молярную восприимчивость χМ, приходящую на грамм-моль вещества, и атомную χа, отнесенную к атомной массе.

Если образец поместить в магнитное поле, то есть магнитная индукция изменяется за счет ориентации магнитных диполей по направлению поля, увеличив (или уменьшив) магнитную индукцию от до . Приращение

(5.5).

представляет намагниченность, или магнитный момент . Величина, показывающая, во сколько раз изменяется магнитная индукция вещества, называется относительной магнитной проницаемостью μ.

Магнитная восприимчивость æ и относительная магнитная проницаемость μ связаны между собой соотношением:

μ= 1+æ (5.6).

В природе встречается много горных пород, которые обладают остаточной намагниченностью , возникшей в древнем магнитном поле Земли за счет различных физико-химических процессов. Ферромагнитные минералы сохранили высокую остаточную намагниченность до наших дней.

Выделяют несколько остаточной намагниченности пород: термостатическую, химическую или кристаллизационную, вязкую, динамическую и др. Горные породы могут одновременно обладать различными видами намагниченности. Векторную сумму их принято называть естественной остаточной намагниченностью .

Под действием современного магнитного поля Земли все горные породы дополнительно приобрели намагниченность, которую назвали современной или индуцированной . Следовательно, горные породы, содержащие ферромагнетики, обладающие суммарной намагниченностью (5.7).

Направление определяется направлением вектора , направление может быть различно, так как оно зависит от многих причин. Вектор часто направлен навстречу T0 (обратная полярность); в результате над рудами наблюдаются интенсивные отрицательные аномалии. Направление влияет на форму графика магнитной аномалии, поэтому его необходимо учитывать при анализе магнитных карт. С этой целью отбирают образцы в районе выявленных аномалий и в лаборатории определяют их магнитные свойства.

Характерной особенностью ферромагнитных минералов – зависимость их магнитной восприимчивости æ от температуры. С повышением температуры магнитная восприимчивость резко повышается, но определенной температуры называемой точкой Кюри (этот закон открыт Пьером Кюри). Если превысить температуру точки Кюри: железо 585°С, пирротин – 325°С, маггемит - 675°С, то минерал размагничивается и превращается в парамагнетик.

Таким образом, по определению:

Магнитная восприимчивость – это способность веществ намагничиваться (изменять свой магнитный момент) под действием внешнего магнитного поля.

Индуцированная намагниченность – это намагниченность создаваемая магнитным полем, исчезающая после прекращения его действия.

Остаточная намагниченность – намагниченность, создаваемая магнитным полем, сохраняющаяся после прекращения его действия.

Естественная намагниченность – остаточная намагниченность, создаваемая древним или современным полем Земли.

 

 

5.2 Магнитные свойства химических элементов и минералов.

 

Большинство химических элементов являются диа- и парамагнитными. Характерно четко выраженная периодичность смены диамагнетизма на парамагнетизм элементов. Элементам первой половины периодов свойственен парамагнетизм в связи с незаполненностью электронами внешней орбиты, элементы второй половины – диамагнетизм, определяющийся полностью заполненными орбитами.

Диамагнитная восприимчивость большинства элементов составляет

(-10÷0)*10-5СИ. Диамагнетиками являются инертные газы, ряд металлов (медь, серебро, золото, цинк, висмут) и неметаллов (кремний, кварц, алмаз, графит, сера, фосфор), органические соединения.

Восприимчивость парамагнитных веществ положительна, и магнитные моменты усиливают внешнее поле. При намагничивании атомные моменты выстраиваются по направлению поля. Абсолютные значения æ меняются в диапазоне 10-2 ÷10-5 ед. СИ.

К парамагнетикам относятся щелочные и щелочноземельные металлы, некоторые переходные металлы; ряд солей железа, кобальта, никеля и редкоземельных элементов, из газов кислород.

Среди парамагнитных веществ выделяется особая группа веществ, называемая ферромагнитными. К ферромагнетикам относится железо, кобальт, никель, и некоторые виды лантаноидов: гадолиний (64 Gd), тербий (65Tb), диспрозий (66Dy), гольмий (67 Ho), эрбий (68Er). А также ряд соединений хрома, марганца и урана с неферромагнитными элементами.

По величине æ все минералы делятся на три группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнитные минералы (висмут, медь, золото, серебро, алмазы, свинец, кварц, гипс, и другие) обладают самой малой восприимчивостью æ обычно порядка (1-2) ·10-5 ед. СИ. Такие минералы не могут создавать магнитных аномалий.

Парамагнетизмом обладают соли редкоземельных элементов, щелочные металлы ряд широко распространенных породообразующих минералов умеренно кислого и основного состава: оливина, пироксенов, амфиболов, гранатов, железосодержащих слюд, а также доломит, магнезит, каолинит. Парамагнитные минералы (платина, гранат, турмалин, мусковит, биотит) имеют магнитную восприимчивости æ порядка (20-90) ·10-5 ед. СИ. Их крупные скопления вызывают аномалии в несколько нанотесл. Магнитная восприимчивость чисто парамагнитных минералов, как правило, не превышает значений (25-35)·10-5ед.СИ. Наличие микровключений ферромагнитных элементов, связанных с ранней стадией кристаллизации магматических пород или с высокотемпературными метасоматическими процессами, повышает значение æ. Двух- и трехвалентное железо, входя в состав слюд, оливинов, пироксенов, гранатов, создает повышенную парамагнитную восприимчивость. Для большинства известных минералов характерная смешанная параферромагнитная природа магнетизма.

Примеры магнитной восприимчивости (*10-5 ед. СИ) некоторых минералов (Н.Б.Дортман, 1984г.):

Кварц …………–1,6;

Микроклин…… 0;

Ортоклаз …….. –0,6;

Плагиоклаз ….. 0;

Шпинель …….. 2,8;

Корунд ………. 1,8;

Циркон ………. –1,2;

Галенит ……… –3,3;

Касситерит …… -2,0;

Флюорит ……… -1,2;

Сфалерит ……… -6,5;

Графит ………… -0,5

 

Интенсивность намагничивания , которая у диамагнитных минералов и парамагнитных минералов прямолинейно растет в увеличением магнитного поля. Если минерал вынести из магнитного поля, то он просто размагнитится.

Ферромагнетики характеризуются значениями æ>> 0, μ>>1, а также намагниченностью, являющейся нелинейной и неоднозначной функцией внешнего магнитного поля. Ферромагнитные минералы (от лат. слова ferrum –железо) обладают самыми высокими значениями магнитной восприимчивости æ. Никель и кобальт естественных ферромагнитных минералов не образуют.

Наиболее постоянными параметрами для чистых ферромагнитных минералов является намагниченность насыщения Js и температура Кюри.

Наиболее распространенными ферромагнитными минералами являются окисные соединения железа – магнетит 8,8-25 ед. СИ, титаномагнетит 1,3-10-4 ед. СИ, маггемит 3,8-25 ед. СИ; сидерит 2,5-7,5 10-3 ед. СИ; из сульфидных минералов – пирротин 0,13-1,3 ед. СИ. Большой магнитной восприимчивостью обладает минерал якобсит MnFe2O4 – 250 ед. СИ.

Н.Б.Дортман выделяет четыре группы минералов:

1) безжелезистые диамагнитные и парамагнитные минералы, характеризующиеся очень низкой магнитной восприимчивостью, составляющие наибольшую часть (в процентном отношении) магматических и метаморфических пород кислого состава;

2) железистые минералы, ферропарамагнитные, магнитная восприимчивость которых изменяется от первого десятка до сотен 10-5 СИ за счет включений ферромагнетиков; они входят в небольшом количестве в состав кислых магматических и метаморфических пород и составляют существенную часть пород основного и ультраосновного состава;

3) ферромагнитные минералы с очень высокой восприимчивостью и часто очень высокой остаточной намагниченностью; являются характерными акцессорными минералами магматических и метаморфических пород;

4) ферромагнитные минералы с низкими магнитными свойствами; специфичны главным образом для осадочных и метасоматических измененных пород.

 

5.3. Магнитные свойства горных пород

 

Магнитные свойства горной породы зависят от ее химико-минералогического состава, структуры, соотношения в породах диа-, пара-, и ферромагнитных минералов и их количества.

Магнитные совйства пород характеризуются широким диапазоном значений до десятков тысяч 10-5СИ. В зависимости от магнитных свойств на практике используют классификацию горных пород, предложенную Д.Л.Берсудским. Он разделил все породы по величине æ на пять групп:

1. практически немагнитные æ< 50·10-5 ед. СИ – в основном это осадочные породы.

2. очень слабомагнитные æ = (50-100)х 10-5 ед. Си – часть осадочных пород, метаморфических и кислых магматических пород;

3. слабомагнитные, æ = (100-1000)х 10-5 ед. СИ (часть осадочных, магматических, и метаморфических пород);

4. магнитные æ= (1000-5000) х10-5 ед СИ. (магматические породы и часть метаморфических);

5. сильномагнитные æ>5000 х10-5 ед. СИ.

Для определения магнитных свойств пород отбирают образцы из обнажений и измеряют в лабораторных условиях. Для измерения остаточной намагниченности отбирают ориентированные образцы по специальной методике.

Магнитные характеристики горных пород определяются следующими факторами:

· концентрацией ферромагнитных материалов.

Основные породообразующие минералы являются диа- и парамагнетиками и характеризуются значениями æ от -5*10-5 ед. СИ до 10-150*10-5 ед. СИ. Присутствие в составе породы зерен ферромагнитных минералов (магнетита, гематита, титаномагнетита, маггемита и др.) резко повышает значение магнитной восприимчивости.

· их составом и структурой.

· особенностями их магнитного строения.

Магматические породы характеризуются очень широким диапазоном значений магнитной восприимчивости – от единиц до десятков тысяч 10-5 ед. СИ. Гипербазиты неизмененные характеризируются слабой магнитной восприимчивостью, соответствующие (20-100)*10-5.

Широкий диапазон измерения значений æ определяется составом первоначальных расплавов, термобарическими и окислительно-восстановительными условиями образования и последующих изменений пород.

В магматических породах ферромагнитные минералы присутствуют в виде зерен первично-магматических минералов – магнетита, титаномагнетита, ильменита, гемольменита и других веществ низко- и высокотемпературного окисления при кристаллизации магмы – гематита, маггемита.

Таким образом, эти минералы появляются как одновременно с образованием породы, так и в процессе ее жизни. Средние значения магнитной восприимчивости возрастают от кислых к основным и ультраосновным группам пород. Кроме того, основные и средние породы ранних фаз внедрения расплавов отличаются во всех интрузивных комплексах различных формаций более высокими значениями æ, чем у последующих фаз. Это связано с ростом кислотности пород от начальных фаз и соответственно уменьшением содержания ферримагнетиков.

Для метаморфических пород характерен наиболее широкий диапазон изменения значений магнитной восприимчивости и естественной намагниченности.

Мрамора, кристаллические известняки характеризуются отрицательной магнитной восприимчивостью. Железистые кварциты, серпентиниты, скарны по значениям магнитной восприимчивости, остаточной и естественной намагниченности приближаются к магнетитовым рудам. При этом эти метаморфические породы встречаются редко и образуют самостоятельный класс диамагнитных пород. Наиболее широко распространенные породы – микрокристаллические сланцы, гнейсы, амфиболиты имеют и малый диапазон изменений магнитных свойств и обладают более низкими максимальными значениями, чем магнитные образования.

Метаморфические породы имеют либо очень слабую магнитную восприимчивость, зависящую от состава породообразующих минералов, либо различное значение магнитной восприимчивости от 100 *10-5 до 10000*10-5 ед. СИ, пропорционально содержанию ферромагнитной фракции.

Все магнитные параметры метаморфических пород зависят от первоначального субстата и от различий процессов его преобразования.

В регионально-метаморфизованных породах ферромагнетики представлены магнетитом, в породах, подвергшихся гидротемально – метасоматическим процессам, - магнетитом, гематитом, маггемитом в тесной ассоциации с породообразующими железосодержащими минералами – оливином, амфиболом, пироксеном. Низкие значения магнитной восприимчивости характерны для метаморфических пород, происходящих из практически немагнитных осадочных (глинистые сланцы, филлиты, кварциты, мрамор и др.).

Магнитные характеристики осадочных пород обусловлены главным образом акцессорными минералами, обладающими выраженными ферромагнитными свойствами – магнетитом и его разновидностями, маггемитом, гематитом и гидроокислами железа.

Значения магнитной восприимчивости осадочных пород существенно меньше значений æ магматических пород, поскольку содержание в них ферромагнитных минералов ниже. Наиболее распространенные породообразующие минералы осадочных пород (кварц, кальцит, полевые шпаты, гипс, ангидрит, галит) являются диамагнетиками или слабыми парамагнетиками и естественно не вносят заметного вклада в магнитную восприимчивость пород.

Среди сильных парамагнетных минералов наибольшую роль играют сидерит, хлорит, пирит, ильменит, биотит, иногда глинистые минералы.

Однако в значительной мере эта роль обусловлена примесями, реликтами и новообразованиями железоокисных минералов с ферромагнитными свойствами. С этими включениями и примесями связаны повышенные значения магнитной восприимчивости.

Магнитные минералы присутствуют в виде зерен магнетита, мартита и гематита с эффективным диаметром от 0,01 до 2 мм. По размерам эти зерна принадлежат к песчано-алевритовой фракции.

В глинистых породах они встречаются в виде тонкорассеянного гематита, маггемита осадочно-диагенетического происхождения. Диаметры зерен в этом случае изменяются от долей микрометра до нескольких десятков микрометров. Все эти частицы попадают в глинистые фракции.

 

5.4. Магнитная восприимчивость нефти.

 

Нефть является диамагнетиком. Ее магнитная восприимчивость примерно равна (-1)*10-5 ед. СИ. В зависимости от плотности и состава магнитная восприимчивость нефти может несколько изменяться. В пластовых условиях нефть может характеризоваться даже слабыми парамагнитными свойствами, что обусловлено молекулярными свойствами органических компонент с железом и его окислами и повышенной концентрацией этих соединений.

Магнитные свойства газа неизвестны. По аналогии с другими газами можно предполагать, что значения магнитной восприимчивости имеет порядок 1*10-5 ед. СИ.

Магнитные аномалии от залежей связываются с различием магнитной восприимчивости углеводородов и законтурных вод, а также пород коллектора.

 

5.5. Палеомагнитная характеристика горных пород

 

Явления палеомагнетизма изучает отрасль геофизики, которая получила название палеомагнитологии. Палеомагнитология изучает геологическое прошлое магнитного поля Земли по «отпечаткам» этого поля в горных породах - векторам остаточной намагниченности Jn. В настоящее время наибольшее развитие получило изучение истории изменений направления магнитного поля Земли, которое отражается в направлениях Jn горных пород разного возраста.

Естественная остаточная намагниченность горных пород состоит из ряда намагниченностей, возникших в разное время. Обычно естественная намагниченность результат сложения двух основных векторов – первичной намагниченности Jn0 , возраст которой совпадает с возрастом породы, и вторичная Jnh, которая возникла недавно и совпадает с возрастом по направлению c современным земным магнитным полем в точке наблюдения.

Главной задачей палеомагнитного исследования является выделение первичной намагниченности.

Осадочные и вулканогенные породы, не измененные или слабо измененные процессами метаморфизма и эпигенеза, могут быть объектами палеомагнитных исследований. Ориентированные образцы с помощью горного компаса повышенной точности или солнечного компаса. Установлено, что направление первичной намагниченности пород есть функция из географического положения и возраста. Распределение направлений Jn0 одновозрастных пород в пределах стабильных в тектоническом отношении территорий соответствуют полю диполя с определенными для данного возраста координатами палеомагнитных полюсов. Изменение координат палеомагнитных полюсов является отражением движения литосферных плит относительно оси вращения Земли.

Палеомагнитные исследования применяются для изучения строения земной коры, в стратиграфии и геохронологии, при региональных геологических исследованиях и геологическом картировании.

 

 

Контрольные вопросы к главе 5.

 

1. Образуют ли ферромагнетики никель и кобальт естественные ферромагнитные минералы?

2. Какие факторы оказывают наибольшее влияние на магнитные характеристики горных пород?

3. Что изучает палемагнитология?

 








Date: 2015-06-06; view: 409; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.221 sec.) - Пожаловаться на публикацию