Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Скорости молекул газа





Каковы скорости, с кото­рыми движутся молекулы, в частности молекулы газов? Этот вопрос естественно возник тотчас же, как были развиты представления о молекулах. Долгое время скорости молекул удавалось оценить только косвенными расчетами, и лишь сравнительно недавно были разработаны способы прямого определения скоростей газовых молекул.

Прежде всего уточним, что надо понимать под скоростью молекул. Напомним, что вследствие беспрестанных столкно­вений скорость каждой отдельной молекулы все время ме­няется: молекула движется то быстро, то медленно, и в те­чение некоторого времени скорость молекулы принимает множество самых различных значений. С другой стороны, в какой-либо определенный момент в гро­мадном числе молекул, составляющих рассматриваемый объем газа, имеются молекулы с самыми различными ско­ростями. Очевидно, для характеристики состояния газа надо говорить о некоторой средней скорости. Можно счи­тать, что это есть средняя величина скорости одной из моле­кул за достаточно длительный промежуток времени или что это есть средняя величина скоростей всех молекул газа в данном объеме в какой-нибудь момент времени.

Остановимся на рассуждениях, которые дают возмож­ность подсчитать среднюю скорость газовых молекул.

Давление газа пропорционально птv2, где т — масса молекулы, v — средняя скорость, а п — число молекул в единице объема. Более точный расчет приводит к формуле

(12)

Из формулы (12) можно вывести ряд важных следст­вий. Перепишем формулу (12) в таком виде:

где e — средняя кинетиче­ская энергия одной молекулы. Обозначим давление газа при температурах Т1 и Т2 буквами р1 и р2 а средние кинетичес­кие энергии молекул при этих температурах e1 и e2. В таком случае

 

, и

Сравнивая это соотношение с законом Шарля

 

найдем:

Итак, абсолютная температура газа пропорциональна средней кинетической энергии молекул газа. Так как средняя кине­тическая энергия молекул пропорциональна квадрату сред­ней скорости молекул, то наше сопоставление приводит к выводу, что абсолютная температура газа пропорцио­нальна квадрату средней скорости молекул газа и что ско­рость молекул растет пропорционально корню квадратному из абсолютной температуры.

Таблица 4- Средние скорости молекул некоторых газов

 

Газ Масса моле­кулы, г Средняя скорость, м/сек
Водород 0,33*10-23  
Кислород 5,3*10-23  
Азот 4,6*10-23  
Углекислый газ 7,3*10-23  
Пары воды 3,0*10-23  

 

Как видно, средние скорости молекул весьма значи­тельны. При комнатной температуре они обычно достигают сотен метров в секунду. В газе средняя скорость движения молекул примерно в полтора раза больше, чем скорость звука в этом же газе.

На первый взгляд этот результат кажется очень стран­ным. Кажется, что молекулы не могут двигаться с такими большими скоростями: ведь диффузия даже в газах, а тем более в жидкостях, идет сравнительно очень медленно, во всяком случае гораздо медленнее, чем распространяется звук. Дело, однако, в том, что, двигаясь, молекулы очень часто сталкиваются друг с другом и при этом меняют на­правление своего движения. Вследствие этого они двигаются то в одну, то в другую сторону, в основном толкутся на од­ном месте. В результате, несмотря на большую скорость движения в промежутках между столкновениями, несмотря на то, что молекулы нигде не задерживаются, они продвигаются в каком-либо определенном направлении до­вольно медленно.

Таблица показывает также, что различие в скоростях разных молекул связано с различием их масс. Это обстоя­тельство подтверждается рядом наблюдений. Например, водород проникает сквозь узкие отверстия (поры) с большей скоростью, чем кислород или азот. Можно обнаружить это на таком опыте.

Стеклянная воронка закрыта пористым сосудом или за­клеена, бумагой и опущена концом в воду. Если воронку накрыть стаканом, под который впустить водород (или светильный газ), то увидим, что уровень воды в конце воронки понизится и из нее начнут выходить пузырьки. Как это объяснить?

 

 

 

 

Рисунок 4- Опыт с водородом

 

Сквозь узкие поры в сосуде или в бумаге могут прохо­дить и молекулы воздуха (изнутри воронки под стакан), и молекулы водорода (из-под стакана в воронку). Но быстрота этих процессов различна. Раз­личие в размерах молекул не играет при этом существенной роли, ибо различие это невели­ко, особенно по сравнению с раз­мерами пор: молекула водорода имеет “длину” около 2,3*10-8 см, а молекула кислоро­да или азота—около 3*10-8 см, поперечник же отверстий, кото­рые представляют собой поры, в тысячи раз больше. Большая скорость проникновения водоро­да через пористую стенку объ­ясняется большей скоростью движения его молекул. Поэтому молекулы водорода быстрее про­никают из стакана в воронку. В результате в воронке полу­чается накопление молекул, давление увеличивается и смесь газов в виде пузырьков выходит наружу.

Подобными приборами пользуются для обнаружения примеси рудничных газов к воздуху, могущих вызвать взрыв в рудниках.

Теплоемкость газов

 

Предположим, что мы имеем 1 г газа. Сколько надо сообщить ему теплоты для того, чтобы температура его увеличилась на 1°С, другими словами, ка­кова удельная теплоемкость газа? На этот вопрос, как пока­зывает опыт, нельзя дать однозначного ответа. Ответ зависит от того, в каких условиях происходит нагревание газа. Если объем его не меняется, то для нагревания газа нужно определенное коли­чество теплоты; при этом увеличивается также давление газа. Если же нагревание ведется так, что давление его остается неизменным, то потребуется иное, большее коли­чество теплоты, чем в первом случае; при этом увеличится объем газа. Наконец, возможны и иные случаи, когда при нагре­вании меняются и объем, и дав­ление; при этом потребуется ко­личество теплоты, зависящее от того в какой мере происходят эти изменения. Согласно сказан­ному газ может иметь самые раз­нообразные удельные теплоемко­сти, зависящие от условий на­гревания. Выделяют обычно две из всех этих удельных теплоемкостей: удельную теплоемкость при постоянном объеме (Сv) и удельную теплоемкость при по­стоянном давлении (Cp).

Для определения Сv надо нагревать газ, помещенный в замкнутый сосуд. Расширением самого сосуда при нагревании можно пренебречь. При определении Cp нуж­но нагревать газ, помещенный в цилиндр, закрытый порш­нем, нагрузка на который остается неизменной.

Теплоемкость при постоянном давлении Cp больше, чем теплоемкость при постоянном объеме Cv. Действительно, при нагревании 1 г газа на 1° при постоянном объеме подводимая теплота идет только на увеличение внутренней энергии газа. Для нагревания же на 1° той же массы газа при по­стоянном давлении нужно сообщить ему тепло, за счет которого не только увеличится внутренняя энергия газа, но и будет совершена работа, связанная с расширением газа. Для получения Сp к величине Сv надо прибавить еще количе­ство теплоты, эквивалентное работе, совершаемой при рас­ширении газа.

Заключение

Природный газ - одно из важнейших горючих ископаемых, занимающие ключевые позиции в топливно-энергетических балансах многих государств, важное сырьё для химической промышленности.

Почти на 90% он состоит из углеводородов, главным образом метана СН4.Содержит и более тяжёлые углеводороды- этан, пропан, бутан, а так же меркаптаны и сероводород (обычно эти примеси вредны),азот и углекислый газ (они в принципе бесполезны, но и не вредны),пары воды, полезные примеси гелия и других инертных газов.

Энергетическая и химическая ценность природного газа определяется содержанием в нём углеводородов. Очень часто в месторождениях он сопутствует нефти. Разница в составе природного и попутного нефтяного газа имеется. В последнем, как правило, больше сравнительно тяжёлых углеводородов, которые обязательно отделяются, прежде чем использовать газ.

Метан, содержавшийся в природном газе, представляет немалую ценность для химической промышленности. При неполном сгорание его образуется водород, оксид углерода СО, ацетилен, а от них начинаются разнообразные цепи химических превращений, приводящих к образованию альдегидов, спиртов, ацетона, уксусной кислоты, амиака...Природный газ, а не вода, является главным

источником промышленного получения водорода. И всё же в основном метан идёт на сжигание. Синтетические возможности других углеводородов, содержащихся в природном газе, более богатые, чем метана. Эти углеводороды превращают прежде всего в этилен и пропилен -важнейшее сырьё для производства пластических масс.

Хранят природный газ в подземных газохранилищах, нередко используя для этого прежние выработки и огромные естественные пещеры. В газгольдерах же (держателях) хранится лишь минимально необходимый запас газа.

Date: 2015-11-13; view: 1834; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию