Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Общие сведения о системе





 

Отечественная сетевая среднеорбитальная СРНС ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система) предназначена для непрерывного и высокоточного определения пространственного (трехмерного) местоположения, вектора скорости движения, а также времени космических, авиационных, морских и наземных потребителей в любой точке Земли или околоземного пространства. В настоящее время она состоит из трех подсистем:

подсистема космических аппаратов (ПКА), состоящая из навигационных спутников ГЛОНАСС на соответствующих орбитах;

подсистема контроля и управления (ПКУ), состоящая из наземных пунктов контроля и управления;

аппаратуры потребителей (АП).

Считается, что возможности существенного повышения точности навигационных определений связаны с созданием глобальной системы отсчета, использующей самоопределяющиеся навигационно-геодезические спутники без привлечения измерений с поверхности Земли.

Система ГЛОНАСС с полностью развернутой группировкой НС характеризуется вероятностью обеспечения навигационных определений

не хуже 0,947 в непрерывном навигационном поле. Точностные характеристики определения плановых координат, высоты и времени равны соответственно 30 м, 30 м и 1 мкс, а доступность системы - 0,98).

Информация, передаваемая потребителям ГЛОНАСС в составе служебной информации конкретного НС, содержит координаты фазового центра передающей антенны данного НС в геоцентрической системе координат. Эта система координат также как и принятая в СРНС СРS система координат WGS-84 относится к декартовым системам типа ЕСЕР (Еаrth-сеntеred Еаrth-fixed, т.е. начало координат расположено в центре масс Земли и направления осей связаны с Землей). До 1993 г. в СРНС ГЛОНАСС использовалась система координат СГС-85.

Частотно-временное обеспечение реализуется системой синхронизации ГЛОНАСС, которая обеспечивает формирование единой системной шкалы времени, синхронизацию БШВ (бортовых шкал времени) каждого с СШВ. расчет частотно-временных поправок (ЧВП). определение расхождения СШВ относительно шкалы Государственного эталона координированного всемирного времени UТС (SU), расчет поправок к СШВ, закладку поправок на борт НС (дважды в сутки) для передачи их потребителям в составе навигационного сообщения.

Частотно-временные поправки рассчитывают на каждом витке НС в виде двух параметров линейной аппроксимации расхождения БШВ относительно НС на тридцати - (шестидесяти) минутном интервале и закладываются дважды в сутки (ориентировочно каждые 12 ч) на борт каждого НС.

Шкала времени каждого спутника ГЛОНАСС может эпизодически подвергаться коррекции с целью того, чтобы отличие этой шкалы от шкалы времени центрального хронизатора не превышало + 1 нс. В этом случае и течение времени, необходимого наземному комплексу для проведения сверки и формирования поправок, в навигационном сообщении передаются признаки, запрещающие использование лого спутника для целей навигации.

Шкала системного времени в ГЛОНАСС корректируется одновременно с коррекциями на целое число секунд шкал UТС (SU), проводимыми Службой Всемирного времени. Коррекции шкал UTС необходимы для их согласования с астрономической шкалой UT1 всемирного времени. Указанная коррекция СШВ ГЛОНАСС осуществляется в 00 ч 00 мин 00 с в полночь с 30 июня на 1 июля или с 31 декабря на 1 января. О планируемом проведении секундной коррекции СШВ ГЛОНАСС сообщается заблаговременно.

Наземный сегмент системы ГЛОНАСС - подсистема контроля и управления, предназначена для контроля правильности функционирования, управления и информационного обеспечения сети спутников системы ГЛОНАСС, состоит из следующих взаимосвязанных стационарных элементов: центр управления системой ГЛОНАСС; центральный синхронизатор; контрольные станции; система контроля фаз; квантооптические станции; аппаратура контроля поля.

Наземный сегмент выполняет следующие функции:

проведение траекторных измерений для определения и прогнозирования и непрерывного уточнения параметров орбит всех спутников;

временные измерения для определения расхождения бортовых шкал времени всех спутников с системной шкалой времени ГЛОНАСС, синхронизация спутниковой шкалы времени с временной шкалой центрального синхронизатора и службы единого времени путем фазирования и коррекции бортовых шкал времени спутников

формирование массива служебной информации (навигационных сообщений), содержащего спрогнозированные эфемериды, альманах и поправки к бортовой шкале времени каждого спутника и другие данные, необходимые для формирования навигационных кадров

передача (закладка) массива служебной информации, в память ЭВМ каждого спутника и контроль за его прохождением

контроль по телеметрическим каналам за работой бортовых систем спутников и диагностика их состояния

контроль информации в навигационных сообщениях спутника, прием сигнала вызова ПКУ

управление полетом спутников и работой их бортовых систем путем выдачи на спутники временных программ и команд управления; контроль прохождения этих данных; контроль характеристик навигационного поля

определение сдвига фазы дальномерного навигационного сигнала спутника по отношению к фазе сигнала центрального синхронизатора

планирование работы всех технических средств ПКУ, автоматизированная обработка и передача данных между элементами ПКУ

Центр управления системой соединен каналами автоматизированной и неавтоматизированной связи, а также линиями передачи данных со всеми элементами ПКУ, планирует и координирует работу всех средств ПКУ на основании принятого для ГЛОНАСС ежесуточного режима управления спутниками в рамках технологического цикла управления. При этом ЦУС собирает и обрабатывает данные для прогноза эфемерид и частотно-временных поправок, осуществляет с помощью, так называемого, баллистического центра расчет и анализ пространственных характеристик системы, анализ баллистической структуры и расчет исходных данных для планирования работы элементов ПКУ.

Центральный синхронизатор, взаимодействуя с ЦУС, формирует шкалу времени ГЛОНАСС, которая используется для синхронизации процессов в системе, например, в системе контроля фаз. Он включает в свой состав группу водородных стандартов.

Контрольные станции (станции управления, измерения и контроля или наземные измерительные пункты) по принятой схеме радиоконтроля орбит осуществляют сеансы траекторных и временных измерений, необходимых для определения и прогнозирования пространственного положения спутников и расхождения их шкал времени с временной шкалой ГЛОНАСС, а также собирают телеметрическую информацию о состоянии бортовых систем - спутников. С их помощью происходит закладка в бортовые ЭВМ спутников массивов служебной информации (альманах, эфемериды, частотно-временные поправки и др.), временных программ и оперативных команд для управления бортовыми системами

Траекторные измерения осуществляются с помощью радиолокационных станций, которые определяют запросным способом дальность до спутников и радиальную скорость. Дальномерный канал характеризуется максимальной ошибкой около 2...3 м. Процесс измерения дальности до спутника совмещают по времени с процессом закладки массивов служебной информации, временных программ и команд управления, со съемом телеметрических данных со спутника.

В настоящее время для обеспечения работ ГЛОНАСС могут использоваться КС, рассредоточенные по всей территории России. Часть КС и других элементов наземного сегмента ГЛОНАСС осталась вне территории России.

В случае выхода из строя одной из станций возможна ее равноценная замена другой, так как сеть КС обладает достаточной избыточностью и в наихудшей ситуации работу системы может обеспечивать ЦУС и одна станция, однако интенсивность ее работы будет очень высокой

Описанная сеть КС отличается от аналогичной структуры СРНС GPS тем, что обеспечивает высокое качество управления орбитальной группировкой только с национальной территории. КС ГЛОНАСС могут использоваться для обеспечения функционирования других космических средств.

Кванто-оптическая станции предназначены для периодической юстировки радиотехнических каналов измерения дальности КС с помощью лазерного дальномера. В этих целях на каждом спутнике размещены специальные лазерные отражатели. Применение КОС обеспечивает высокоточное измерение параметров движения спутников ГЛОНАСС. За последние 20 лет разработаны три отечественные лазерные станции слежения или КОС: лазерная дальномерная система Гео-ИК; КОС Эталон; КОС Майданак (Узбекистан).

Наиболее эффективно лазерные станции работают в ночное время при хорошей видимости.

Система ГЛОНАСС создавалась в условиях, когда уровень фундаментальных исследований в области геодезии, геодинамики и геофизики не обеспечивал требуемую точность эфемеридного обеспечения системы. В этих условиях был проведен комплекс работ по обоснованию путей, решения этой проблемы через построение согласующих моделей движения спутников, параметры которых определяют в процессе решения самой задачи баллистико-навигационного обеспечения системы

Исследования показали, что необходимо отказаться от типовых острорезонансных (например, с периодом обращения спутника равным 12 ч, как в СРНС GPS, когда период вращения Земли вокруг своей оси равен двум периодам обращения спутника) орбит спутников, так как в процессе моделирования уравнений траекторного движения спутников это повышает устойчивость их решений и ослабляет корреляции между параметрами отдельных уравнений (моделирующих, например, изменение геопотенциала, координат измерительных средств, радиационного давления). Кроме того, оказалось, что наивысшая точность баллистико-эфемеридного обеспечения системы при решении многомерной навигационной задачи с расширенным вектором состояния обеспечивается при обработке измеренных текущих навигационных параметров на интервале 8сут. Переход от острорезонансных орбит был осуществлен путем увеличения числа витков спутника (по сравнению с GPS) на интервале 8сут до 16...17. Число спутников в системе брано равным 24 с равномерным распределением по трем орбитальным плоскостям. Все спутники системы фазируются таким образом, что на больших временных интервалах они имеют один след на поверхности Земли. Это обеспечивает высокую баллистическую устойчивость системы и относительно высокую точность и простоту расчетов траекторий. Опыт эксплуатации системы показал, что при обеспечении начального периода обращения спутника с точностью не хуже 0,1 с на протяжении заданного срока активного существования спутника его положение в системе корректировать не нужно.

В настоящее время в системе ГЛОНАСС используется запросная технология эфемеридного обеспечения, когда исходной информацией для расчета эфемерид служат данные измеренных текущих параметров спутников, поступающие в ЦУС от контрольных станций по программам межмашинного обмена через вычислительную сеть. Ежесуточно осуществляется 10...12 сеансов передачи информации по каждому спутнику.

В типовых операциях управления ПКУ ГЛОНАСС предусмотрено использование измерений КС в запросном режиме с двумя разновидностями ДН бортовой антенной системы - всенаправленной и узкой. В первом случае точностные характеристики измерений запросной дальности находятся в пределах от сотен метров до десятков километров. Такие измерения выполняют только на первом этапе полета НС.

Определение параметров движения спутника производится по запросным измерениям дальности и радиальной скорости в два этапа. На первом этапе определяют параметры движения спутника по измерениям радиальной скорости с последующей переработкой этих измерений с использованием уточненных по ним начальных условий движения. На втором этапе вычисляют параметры движения спутника по измерениям дальности и радиальной скорости.

Параметры движения спутника на участках приведения и постановки спутника в системную точку находят на мерных интервалах продолжительностью 14 витков. Технология эфемеридного обеспечения на этапе штатной эксплуатации основана на использовании высокоточных измерений дальности КС и включает предварительную обработку измерений (расшифровка данных измерений КС с последующим устранением неоднозначности измерений дальности, калибровкой, приведением измерений к центру масс спутника для компенсации выноса бортовой антенны, учетом ионосферной и тропосферной рефракции).

Решение проблемы высокоточных определений орбит возможно при, создании высокоточных математических моделей движения и измерений, на точность которых влияют следующие факторы: геофизические, определяемые погрешностью задания системы координат и гравитационного поля Земли; геодинамические, связанные с нахождением координат полюса и неравномерности вращения Земли; а также факторы, обусловленные учетом негравитационных возмущений в модели движения.

В основе этих методов лежит понятие согласующих моделей, которые представляют собой системы геофизических параметров и параметров, определяющих математическую модель движения НС по данным обработки навигационных измерений. Такие модели не являются фундаментальными и пригодны только для конкретных орбит, и позволяют при наличии высокоточных измерений параметров движения НС и достаточно полном описании действующих на них сил уменьшить влияние погрешностей определения геофизических и геодинамических факторов на точность определения эфемерид конкретного НС за счет уточнения координат измерительных пунктов, параметров гравитационного поля Земли, параметров вращения Земли и включения координат КС и других параметров согласующей модели в состав расширенного вектора состояний НС.

При решении задач определения и прогнозирования движения спутника эфемериды рассчитывают путем численного интегрирования дифференциальных уравнений движения комбинированным методом Рунге - Кутта и Адамса в координатной системе, заданной средним экватором и равноденствием эпохи начала бесселева года (в 1975 г). В правых частях дифференциальных уравнений учитываются основные возмущающие силы. Гравитационное поле Земли представлено разложением в ряд по сферическим функциям до гармоник степени и порядка 8 включительно. При моделировании расчетных аналогов измерений учитываются уходы полюса и поправки ко времени за счет неравномерности вращения Земли.

При выводе спутника из системы требование к точности нахождения параметров движения определяются исходя из необходимости надежного вхождения в связь со спутником. В этом случае параметры движения спутника определяют на мерных интервалах длительностью не менее четырех витков не реже одного раза в месяц. В состав уточняемых параметров при этом включаются только кинематические.

В соответствии с целевым назначением система ГЛОНАСС имеет в своем составе подсистему КА (навигационных спутников), которая представляет собой орбитальную группировку из 24 спутников. Спутники, излучая непрерывные радионавигационные сигналы, формируют в совокупности сплошное радионавигационное поле на поверхности Земли и в околоземном пространстве, которое используется для навигационных определений различными потребителями.

Структура сети спутников такова, что в каждой точке земной поверхности и околоземного пространства в любой момент времени находится одновременно не менее четырех спутников, взаимное расположение и качество сигналов которых обеспечивает ему возможность координатно-временных измерений с заданными характеристиками. Требование по количественному составу орбитальной группировки основывается на том, что заданные точностные характеристики навигационного обеспечения могут быть получены в системе ГЛОНАСС при наличии в орбитальной группировке, например, 21 спутника (по семь спутников в каждой орбитальной плоскости), а остальные обеспечивают "горячий" резерв и высокую устойчивость системы.

Спутники ГЛОНАСС размещаются на трех практически круговых орбитах. Высота каждой орбиты составляет 18 840... 19 440 км (номинальное значение составляет 19 100 км), что позволяет отнести ГЛОНАСС к среднеорбитальным СРНС.

Таким образом, орбитальная группировка спутников ГЛОНАСС с несинхронными почти круговыми орбитами более стабильна по сравнению с группировкой спутников СР5 с синхронными 12-тичасовыми орбитами.

Рассмотренная структура орбитальной группировки позволяет обеспечить практически непрерывное и глобальное покрытие земной поверхности и околоземного пространства (включая ближний космос) навигационным полем с заданными характеристиками.

В отличие от сигнала стандартной точности системы GPS в системе ГЛОНАСС не предусматривается его принудительного загрубления, хотя иногда и используется применительно к нему обозначение ПТ-сигнал (сигнал пониженной точности). Однако имеющиеся более низкие по сравнению с ВТ-сигналом характеристики точности можно отнести к этапу выбора параметров сигнала при разработке системы и не связаны с политикой поставщиков нави рационного обслуживания в системе ГЛОНАСС на этапе ее эксплуатации. В связи с этим всем пользователям ГЛОНАСС доступны измерения координат местоположения и скорости с беспрецедентно высокой (даже по отношению к открытому каналу системы GPS) точностью. В дальнейшем более подробно рассматривается структура и характеристики СТ-сигнала, передаваемого в диапазоне L1.

Контроль целостности радионавигационного поля СРНС заключается в контроле качества излучаемых НС системы навигационных радиосигналов и качества передаваемой ими служебной информации с целью поддержания высокой достоверности навигационных измерений и/или предупреждения потребителей о состоянии системы. Известны несколько способов контроля целостности.

Самоконтроль бортовых систем НС. На спутниках системы ГЛОНАСС осуществляется непрерывный автономный контроль (самоконтроль) функционирования основных бортовых систем. При обнаружении непарируемых нарушений нормального функционирования этих систем, влияющих на качество излучаемого спутником навигационного радиосигнала и достоверность передаваемого навигационного сообщения, на спутнике формируется признак его неисправности, который передается потребителю системы в составе оперативной информации навигационного сообщения. Дискретность передачи такого признака составляет 30 с. Максимальная задержка от момента обнаружения неисправности до момента передачи соответствующего признака не превышает 1 мин. В дальнейшем планируется уменьшить это время до 10 с.

Недостатки этого канала контроля заключаются в его неполноте, например, средства самоконтроля рассчитаны на обнаружение не всех возможных нарушений в работе каждой бортовой системы НС; неисправности самих средств контроля не обнаруживаются и не сопровождаются передачей соответствующего сообщения потребителям; искажение эфемерид не может быть обнаружено на самом НС и т.д.

Наземный контроль. Качество навигационного поля ГЛОНАСС контролируется и специальной аппаратурой из состава ПКУ - аппаратурой контроля поля (АКП). После соответствующего отказа бортовой аппаратуры спутника АКП обеспечивает формирование признака его неисправности в альманахах системы всех НС не позднее, чем через 16 ч. Дискретность передачи данного признака в служебных сообщениях НС ГЛОНАСС составляет 2,5 мин.

Однако, оба указанных метода контроля целостности навигационного ноля ГЛОНАСС не обеспечивают требуемой полноты проверок и своевременности оповещения потребителей.

На борту спутника находятся: бортовой навигационный передатчик (БНП); хронизатор (БХ); управляющий комплекс (УК); системы ориентации и стабилизации (СО), коррекции, электропитания; терморегулирования; бортовые средства заправки и обеспечения среды; элементы конструкции и кабельная сеть.

Для обеспечения надежности основные системы навигационного спутника дублируются. Рассмотрим основные элементы бортовой аппаратуры НС ГЛОНАСС.

Аппаратура потребителей (приемоиндикаторы СРНС) предназначена для определения пространственных координат, вектора скорости, текущего времени и других навигационных параметров в результате приема и обработки радиосигналов, принятых от НС.

На вход ПИ поступают сигналы от НС, находящихся в зоне радиовидимости.

Современные ПИ являются аналого-цифровыми системами, сочетающими аналоговую и цифровую обработку сигналов. Переход на цифровую обработку осуществляется на одной из промежуточных частот, при этом имеет место тенденция к повышению этой промежуточной частоты.

Так как приемоиндикаторы СРНС имеют множество возможных применений (наземное, авиационное, морское, космическое и др.), то при их разработке необходимо основываться на создании унифицированных узлов с минимальной номенклатурой, из которых в дальнейшем можно конструировать ПИ различного применения.

В качестве антенны можно использовать микрополосковую антенну (МПА), что обусловлено ее малой массой и габаритными размерами, простотой изготовления и дешевизной. Микрополосковая антенна состоит из двух параллельных проводящих слоев, разделенных диэлектриком: нижний проводящий слой является заземленной плоскостью, верхний - собственно излучателем антенны. По форме излучатель может быть прямоугольником, эллипсом, пятиугольником и т.д. Антенна рассчитывается для работы на низшей резонансной моде, которая излучается в основном в верхнюю полусферу (в направлении вертикальной оси). Микрополосковая антенна имеет ДН, обеспечивающую всенаправленный прием сигналов правосторонней круговой поляризации в верхней полусфере.

Приемник является многоканальным устройством, в котором, как отмечалось выше, проводится аналоговое усиление сигналов, фильтрация и преобразование частоты несущей сингалов НС (понижение частоты), а также преобразование аналогового сигнала в цифровую форму. Так как в ГЛОНАСС сигнал от каждого спутников имеет свою несущую частоту, то каждый канал должен быть настроен на частоту сигнала одного из НС и селектировать частоты сигналов других НС.


Date: 2015-11-15; view: 544; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию