Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Частотомер





 

Частотомер – прибор, предназначенный для измерения частоты периодического процесса спектра сигнала, а также для нахождения частот гармонических элементов спектра сигнала.

Частотомеры подразделяются относительно способа, по которому производятся измерения. К такому типу относят устройства прямой оценки, такие как аналоговые, и приборы сравнительной оценки, например резонансные, гетеродинные и электронно-счетные частотомеры.

Различаются по физическому значению определяемой величины: синусоидальные колебания рассматриваются при помощи аналоговых приборов; частоты гармонических элементов определяются гетеродинными, резонансными и вибрационными частотомерами; для исследования дискретных явлений применяются электронно-счетные и конденсаторные устройства.

Также существует деление относительно конструктивного решения частотомера. Приборы могут представлять собой щитовые, переносные, стационарные конструкции.

Частотомеры предназначены для произведения электроизмерительных и радиоизмерительных работ, поэтому они могут рассматриваться как электроизмерительные частотомеры и радиоизмерительные частотомеры. Электроизмерительные частотомеры включают в себя аналоговые стрелочные частотомеры всевозможных системных решений, вибрационные, конденсаторные, электронно-счетные частотомеры; радиоизмерительные частотомеры – резонансные, гетеродинные, конденсаторные, электронно-счетные частотомеры.

Аналоговые стрелочные частотомеры подразделяются относительно входящего в них измерительного приспособления: электродинамические, электромагнитные, магнитоэлектрические.

Разработаны частотомеры такого типа на основе применения частотозависимой цепи, характеризуемой взаимодействием модуля полного сопротивления относительно частоты. В аналоговом устройстве предусмотрен измерительный механизм, в роли которого в основном выступает логометр. Логометр представляет собой устройство с двумя плечами, на одно плечо поступает определяемый сигнал, проходя частотонезависимую цепь, на второе сигнал поступает сквозь частотозависимую цепь. Также логометр оснащается ротором со стрелкой, который в результате взаимодействия магнитных потоков фиксируется в положении, показываемом отношением токов в обмотках.

Вибрационные (или язычковые) частотомеры относятся к устройствам с наличием мобильного компонента, представленного в виде комплекта упругих деталей, например язычков или пластин. Подвижные части включаются в резонансное колебание в результате воздействия на них переменным магнитным или электрическим полем.

Гетеродинные частотомеры разработаны на принципе исследования сравнения между частотами входного сигнала и частотой перестраиваемого генератора – гетеродина, используя метод нулевых биений.

Рабочее состояние идентично работе резонансного частотомера, описанного ниже.

Резонансные частотомеры созданы на рассмотрении сравнительных характеристик частоты входного сигнала и собственной резонансной частоты перестраиваемого резонатора, в роли которого могут выступать колебательный контур, отрезок волновода как объемный резонатор, четвертьволновой отрезок линии.

Цепочка действия следующая: контролируемый сигнал, проходя входные цепи, отправляется на резонатор, поступив на резонатор, сигнал, проходя детектор, отправляется на индикаторное приспособление, например гальванометр. Частотомер может оснащаться усилителями, которые усиливают чувствительную способность частотомера. Резонатор при помощи оператора настраивается относительно максимального значения индикатора, отсчет частоты производится относительно лимба настройки.

Электронно-счетные частотомеры очень широко примененяются, так как обладают широким диапазоном частот в пределах от долей герца до десятков мегагерц. Чтобы увеличить диапазон до сотен мегагерц и десятков гигагерц, частотомер оснащается вспомогательными блоками, которые характеризуются как делители частоты и переносчики частоты. Электронно-счетные частотомеры также отличаются универсальностью, достаточно высокой точностью. Частотомеры этого типа могут производить измерения периода движения импульсов, отслеживать промежутки времени, возникающие между импульсами, исследовать взаимодействие двух частот. Отмечено их применение как счетчиков численности импульсов. Электронно-счетные частотомеры могут производить работу, сочетая несколько способов измерения, например гетеродинный и электронно-счетный способы, при этом существенно расширяя диапазон измерения, создавая нахождение несущей частоты импульсно-модулированных сигналов.

Наипростейший частотомер изготавливается при помощи логических элементов одной микросхемы, прибор такого типа используется для измерения частоты переменного напряжения в диапазоне от 20 Гц до 20 кГц. В этом приборе роль входного элемента играет триггер Шмита, который трансформирует на входе переменное напряжение синусоидальной формы в импульсы прямоугольной формы равной частоты. Для работы триггера требуется наличие определенной амплитуды входного сигнала, которая не должна превышать пороговую величину. Шкала частотомера задается как общая для всех диапазонов измерения, к тому же практически равномерная. Необходимо задать начальную границу и конечную границу шкалы относительно всех диапазонов, в основном это поддиапазон 20—200 Гц, под который ориентируются частотные границы остальных двух поддиапазонов. Для поддиапазона 200—2000 Гц результат измерения, полученный при помощи шкалы, увеличивается в 10 раз, а для поддиапазона 20 кГц увеличение производится в 100 раз.

Для повышения чувствительности частотомера используется введение вспомогательного усилителя входного сигнала, в роли которого могут выступить маломощный полупроводниковый транзистор или аналоговая микросхема в виде трехступенчатого усилителя для видеоканалов телевизионных приемников, характеризуемых наличием большого коэффициента усиления. Частота может иметь синусоидальные, прямоугольные, пилообразные колебания, а также колебания другого вида. Колебания, проходя первый конденсатор, поступают на вход микросхемы, затем производится усиление на выходе микросхемой через второй конденсатор, и колебания отправляются на вход триггера Шмита. Еще один конденсатор включен для ликвидации внутренней отрицательной обратной связи, которая уменьшает усилительные характеристики микросхемы.

Частотомер для измерения КСВ предназначен для нахождения величин мощности, при прямой отраженной волне отображается стрелочными приспособлениями с наличием подсвечиваемой шкалы. Частотомер такого типа работает в режиме калибровки и режиме определения в результате демпфонирования индикаторов, осуществляя измерения флуктуирующих сигналов. Прибор есть объединение двух частотомеров, его задняя панель оснащена двумя парами разъемов, при этом одна пара ориентирована на произведение замеров КСВ, мощности в частотном диапазоне 1,8—160 МГц, вторая пара рассчитана на диапазон 140—525 МГц.

Частотомер на базе звуковой карты разработан для произведения измерения частоты звукового сигнала, который непосредственно подается на линейный вход звуковой карты.

Вибрационные и аналоговые частотомеры используются в качестве контролеров сети электропитания. Гетеродинные частотомеры применяются для создания и отслеживания настройки, эксплуатации, для контролирования над приемопередающими устройствами, для измерения несущей частоты модулированных сигналов. Электронно-счетные частотомеры используются для обслуживания, регулировки, диагностики радиоэлектронных устройств разнообразного направления, также применяются для произведения контроля рабочих состояний радиосистем, технологических процессов. Резонансные частотомеры служат для настройки, обслуживания, а также для произведения контроля над действием приемопередающих приспособлений и определения несущей частоты модулированных сигналов.

 

Часы

 

Часы – измерительный прибор, с помощью которого определяют текущее время – часы, минуты, секунды. Потребность знать время была всегда, и это способствовало созданию устройств для его определения. Самый первый прибор подобного рода появился уже за 3000 лет до н. э. – это были солнечные часы. Они представляют собой горизонтальный или вертикальный прямоугольный циферблат с пластиной-стержнем, тень от которого и показывает время на этом циферблате. Первые часы в древности имели, как правило, горизонтальные циферблаты. В Средние века стали отдавать предпочтение вертикальным. Следующими после солнечных были изобретены водяные и песочные часы, это было преимуществом, так как солнечные могли показать время только днем, и то в солнечную погоду. Водяные же часы показывали время и днем, и ночью, но не очень точно. Конструкция водяных часов – это сосуд с временной шкалой, в сосуд капала вода из другой емкости, и повышение уровня воды показывало на шкале время. Но измерить время можно не только поступательным или вращательным движением, но и колебательным движением, и время будет отсчитываться по числу колебаний. Первые механические часы были изобретены в XIV в., они имели шпиндельный механизм с гирями, у них была только одна часовая стрелка, и они тоже не обладали точностью хода. В XVI в. в Германии появились карманные часы, также со шпинделем, но вместо гирь с пружиной, имевшие неточные показания. Механические маятниковые часы создал в 1657 г. Х. Гюйгенс, что сделало отсчет более точным. В 1675 г. в Великобритании У. Клемент использовал крючковой механизм вместо шпиндельного, Дж. Грагам – анкерный механизм. В 1675 г. Гюйгенс изобрел балансовый регулятор. Устройство представляло собой систему, состоящую из колеса-баланса и спирали. Баланс – колесо на стальной оси, к которой прикреплена спираль-пружина одним концом, другой ее конец крепится к опоре, которая неподвижна. Эта балансовая система, совершающая колебательные движения вокруг своей оси, и период ее колебаний определен инерцией баланса и жесткостью пружины. Это устройство обладало надежностью в эксплуатации и достаточной точностью. В середине XVIII в. с изобретением свободного анкерного механизма повысилась точность часов. Но в балансовых часах со стальной спиралью на погрешность влияет температура воздуха, что составляет 11 с за сутки. В XVIII в. в балансовой системе П. Леруа использовал компенсационные грузы для устранения температурной зависимости. В России созданием часовых устройств занимались известные изобретатели Т. И. Волосков, Кулибин, И. П. Носов, Д. И. Толстой. В конце ХК в. Ш. Э. Гильом изобрел специальные материалы с минимальным термоэластичным коэффициентом, что делало влияние температуры практически несущественным. Для часовых маятников этот материал назывался инвар, для спиралей – элинвар.

Современные часы различаются по назначению и по типу колебательной системы.

По назначению часы бывают и бытовыми, и специализированными. Бытовые – это настольные, настенные, наручные, карманные; специализированные – это дорожные, подводные, антимагнитные, сигнальные, программные, процедурные, табельные, астрономические. Типы колебательных систем – это балансовые, камертонные, маятниковые, кварцевые, квантовые.

Механические часы. Конструкция включает систему зубчатых колес, двигатель, пружину, спусковой механизм, стрелочный механизм, механизм заводки – барабан-регулятор. Часы имеют часовые, минутные и секундные стрелки. Есть модификации, которые показывают числа, дни, месяцы, есть конструкции, имеющие дополнительный завод в виде качающегося груза, который качанием и заводит пружину.

Современные часы обладают точностью хода.

Первые электромеханические часы появились в первой половине XIX в. Они были балансовыми или маятниковыми, завод осуществлялся с помощью электромагнита. Швейцарские конструкторы Л. Бреге и М. Гипп применили электропривод, который управляет балансом или маятником. Двигатель часов – колебательная система. В середине ХХ в. были сконструированы электромеханические балансовые часы с механическими контактами. Самые современные конструкции имеют интегральные микросхемы и отличаются высокой надежностью и точностью.

Электронно-механические часы. Работой их шагового двигателя управляют электрические импульсы, имеют высокочастотные кварцевые осцилляторы. В конце ХХ в. такие часы производились во многих странах – в Японии – Seiko, в США – «Гамильтон», «Омега», в Швейцарии – Patek Philippe Ebauches. Кварцевый генератор имеет высокую устойчивость к температурным и динамическим воздействиям, что делает эти часы высокоточными.

Электронные часы стали выпускаться в конце ХХ в. Они имеют кварцевый генератор на жидких кристаллах, счетчик, дешифратор. Существуют конструкции со стрелочной и цифровой индикацией.

Часы имеют различную точность в зависимости от их назначения: атомные – 1013 с, маятниковые – 1011 с, кварцевые – 108 с, наручные кварцевые – 2 с, балансовые – 15 с, механические – 5—60 с, будильники – 1,5 мин.

Астрономические часы используются для астрономических наблюдений, обладают высокой точностью. Астрономия – древняя наука, и других часов, кроме солнечных, у нее не было. В 1657 г. Х. Гюйгенс изобрел маятниковые часы, которые использовались для астрономических целей. Но длина маятника может меняться в зависимости от температуры, что делает измерение неточным. Для устранения этого влияния маятники изготавливают из специальных материалов, и сами часы изготавливают в специальных камерах. Самые точные механические астрономические часы – это маятниковые часы Федченко. И в конце ХХ в. появились кварцевые, дающие большую точность, чем все другие конструкции.

 

Часы (прибор)

 

Часы – прибор для измерения промежутков времени с периодической последовательностью заданной продолжительности, измеряются в единицах, не превышающих одни сутки, начиная с 3/4 с.

Часы подразделяются по размеру и портативности на башенные, карманные, настольные, настенные, наручные. Также часы рассматриваются относительно механизма измерения, и поэтому существуют следующие типы: астрономические, атомные, водяные, кварцевые, огненные, песочные, солнечные, электронные часы.

Астрономические часы относятся к часам, независимым от погодных условий, например изменчивости температур, давления, влажности воздуха, а также от непредвиденных механических воздействий, срока службы механизма осей часов, применяемых смазочных средств, молекулярной трансформации частей часов. Типы астрономических часов:

1) постоянные, оснащаются гирями, выполняющими функции движущей силы, роль регулятора движения выполняет маятник;

2) переносные, характеризуемые наличием пружины, постепенное развертывание которой образует силу упругости, создающую движение в часах, регулируются при помощи колебаний упругой и тонкой спирали в соединении с балансом.

Кварцевые часы относятся к электронно-механическим часам, которые созданы на основе сегнетоэлектрического эффекта, на характеристике кристаллов кварца подвергаться деформации при влиянии внешнего электрического поля, а также возможности образования заряда в результате механической деформации. Кристалл кварца обладает особенностью стабильно генерировать колебания, для которых свойственно наличие высокой стабильности во времени и температуре. Конструкция кварцевых часов представляет собой наличие источника энергии, т. е. элемента питания, электронного генератора, обеспечивается счетчиком делителя, предусмотрен выходной каскад усилителя, нагруженного на катушку синхронного электромотора, создающего движение стрелки, которое происходит сквозь систему зубчатых колес.

Механические часы состоят из двигателя, передаточного механизма зубчатых колес, регулятора для равномерного движения, распределителя, иначе называемого спуском. Распределитель производит передачу толчков от двигателя к регулятору, толчки являются источником движения регулятора. Также распределитель контролирует движение передаточного механизма, поэтому служит контрольным фактором отслеживания закономерного движения регулятора, исполняющего функцию измерения времени. Счетчиками единиц времени, которые отсчитываются регулятором, являются зубчатые колеса в соединении со стрелками циферблата. Масштабом для рассмотрения интервалов времени является равномерное суточное вращение Земли вокруг оси.

Главным образом единица времени задается секундой, что составляет 1/86 400 часть от суток. В механических часах регулятор настраивается таким образом, чтобы пройденные интервалы времени соответствовали целой секунде, половине секунды, четверти или пятой части секунды. В случае отмеривания регулятором не заданных интервалов времени, а меньших, срабатывает счетчик, который покажет в заданном периоде времени превышающее число интервалов времени, в этом случае происходит как бы движение механических часов быстрее истинного времени, при показывании уменьшенного числа интервалов получается запаздывание часов. При установленном начальном моменте суток закладывается понятие поправки часов. Поправка положительна, если часы отстают; если часы спешат, то поправка отрицательна. Ход часов определяется в качестве изменения поправки часов в фиксированный интервал времени, положительным ход считается в случае отставания часов, отрицательным – в случае опережающего движения часов. Ход обусловливает погрешности, которые отмеряются регулятором интервалов времени относительно установленной единицы времени. Поправка относится к условной величине, которую возможно исправить в результате нехитрого действия перевода минутной стрелки часов, поэтому поправка может составлять менее мин. Главной особенностью механических часов считается постоянство хода.

Первые огненные часы отмечены в Китае. Конструкция часов включала в себя спираль, состоящую из горючего материала, на которую устанавливались в подвешенном состоянии металлические шарики. Вместо спирали могли браться палочки. В результате горения материал сгорал, и шарики, падая, попадали в фарфоровую вазу, установленную под ними. При соприкосновении шарика и вазы получался звон. Огненные часы, используемые в Европе, создавались на основе свечей с метками, которые представляли собой своеобразную шкалу равномерных меток. Заданный отрезок между метками принимался за установленную единицу времени.

Песочные часы созданы на принципе прохождения точно откалиброванного речного песка сквозь отверстие, соответствующее размеру одной песчинки. Состоят из двух частей, которые объединяются перешейком с отверстием для пересыпания из одной части в другую песка, при этом отверстие задано размером в одну песчинку. Части для поступления песка изготавливались в виде чаши, заполнение которых обусловливало определенный промежуток времени. Для того чтобы происходило непрерывное исчисление времени, песочные часы необходимо переворачивать при полном заполнении одной из частей.

Солнечные часы разработаны на основе отбрасывания тени предметов в результате освещения объектов солнечным светом и определения солнечного пути как эталонного значения для различных промежутков времени. Однако для таких часов необходимо учитывать поправки на широту местопребывания солнечных часов.

Электронные часы разработаны на принципе считывания периодов колебания от стабильного кварцевого генератора при помощи счетчиков делителей, полученные значения отправляются на электронный дисплей, где мы их можем увидеть. Дисплеи могут быть электро-люминисцентно-вакуумными, светодиодными, жидкокристаллическими. Вначале часы такого типа изготавливались на отдельных лампах, модернизация позволила перейти к производству на основе транзисторов, а затем и микросхем.

Наручные электронные часы оснащались светодиодными дисплеями, их недостатком являлось большое поглощение питания светодиодами, поэтому был сделан переход к жидким кристаллам, для которых свойственны ориентирование во внешнем электрическом поле и возможность пропускания света при наличии одного направления ориентации.

При внедрении света от внешних источников между двумя поляризаторами впитывается системой «поляризатор – жидкий кристалл – поляризатор – отражатель». При влиянии электрического поля создается компонент изображения, что позволяет сократить потребление энергии и увеличить срок эксплуатации элементов питания. Современные модели электронных часов обеспечиваются микроконтроллером. Часы разрабатываются с большим количеством вспомогательных функций. Например, в часах предусматривается наличие будильника, календаря, возможность воспроизведения заданного количества мелодий. Микроконтроллер основан на считывании периода колебания кристалла кварца. Созданы электронные часы, работающие относительно подсчета периодов частоты сети, от которой часы потребляют энергию. Существуют стандарты стабильности частоты, однако в результате колебания нагрузки возможно модифицирование частоты, поэтому точность часов такого типа не определяется как нормальная, являющаяся достаточной для большинства людей.

 

Date: 2015-09-25; view: 989; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию