Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Мангровые заросли жизни





Синтетическую теорию эволюции создавали по большей части зоологи и ботаники, обладавшие глубокими знаниями о животных и растениях. Как правило, для передачи своих генов растения и животные спариваются и производят на свет потомство, которое получает некую комбинацию родительской ДНК. В процессе эволюции среди них возникают мутации, самые удачные из которых затем расходятся с каждым поколением все шире, как круги по воде. Но животные и растения появились на Земле относительно недавно, в истории жизни они занимают достаточно скромное место. Эволюция была – и продолжает быть – преимущественно историей о микробах. В вопросе передачи и воспроизводства генов бактерии и другие одноклеточные организмы подчиняются иным законам, нежели мы с вами. Постепенно биологи‑эволюционисты выясняют, насколько они не похожи на нас, и раз за разом перерисовывают отдельные участки древа жизни.

Бактерии и другие микроорганизмы могут размножаться так же, как это делают клетки нашего тела: они делятся надвое, и каждая копия получает собственный комплект ДНК. При ошибочном копировании какого‑нибудь гена один из двух «отпрысков» становится мутантом, и в дальнейшем все потомки этой особи тоже получают в комплекте мутировавший ген. Но, помимо этого, микроорганизмы могут получать новые гены и после рождения.

У многих видов бактерий часть генов хранится не только в единственной кольцевой молекуле ДНК, но и в дополнительных мелких ДНК‑петлях или кольцах, называемых плазмидами. Бактерия может передавать эти плазмиды другим, как одного с ней, так и совершенно другого вида. Вирусы также способны переносить ДНК между бактериями; они получают генетический материал от одного хозяина и вводят его в следующего. Иногда случается даже, что несколько генов – участок собственной ДНК бактерии – отделяется от хромосомы и направляется в другой микроорганизм. А когда бактерия погибает и ее кольцевая ДНК выходит из разрушенной клеточной оболочки, бывает, что другие бактерии собирают бесхозные теперь гены и включают их в свой геном.

Микробиологи узнали о том, что бактерии умеют обмениваться генами, еще в 1950‑х гг., но тогда никто и представить себе не мог, какое значение подобные обмены имели в истории жизни на Земле. Кроме того, очень сложно было судить о частоте этих событий. Может быть, обмены происходят так редко, что практически не оставляют после себя следов. Только в конце 1990‑х гг., когда появилась возможность полностью «прочитывать» геномы различных микроорганизмов, ученые смогли наконец прояснить этот вопрос. Результат оказался поразительным. Выяснилось, что значительная часть генов многих бактерий принадлежала первоначально другим, отдаленно родственным видам. К примеру, Escherichia соli за последние 100 млн лет 230 раз подхватывала ДНК от других микробов.

Свидетельства подобной передачи генов можно обнаружить даже на самых древних ветвях жизненного древа. Archeoglobus fulgidus – архея, обитающая на морском дне в тех местах, где есть выходы нефти. Она обладает всеми необходимыми признаками археи – особенно характерны молекулы, из которых она строит клеточную стенку, а также способ копирования информации с генов и строительства белков. Но вот питается она нефтью, причем пользуется для разложения нефти ферментами, которые можно обнаружить только у бактерий, у других архей они не встречаются. Наши собственные гены тоже имеют смешанное происхождение. Так, гены, отвечающие за обработку информации – в частности, за копирование ДНК, – находятся в близком родстве с генами архей. А многие гены, имеющие отношение к домашнему хозяйству – иными словами, к выработке белков, которые участвуют в переработке пищи и удалении отходов, – больше похожи на гены бактерий. Открытие этих чужеродных генов говорит о том, что ранняя эволюция жизни была куда более сложной, чем считалось, – и куда более интересной.

Эти результаты вдохновили Карла Вёзе – микробиолога, который первым заговорил о трех основных ветвях жизни, – предложить новый взгляд на общего предка всей жизни на Земле. В момент перехода из мира РНК в мир ДНК жизнь все еще плохо умела воспроизводить себя. Еще не существовало ферментов, способных проверять качество копирования и корректировать ошибки, не существовало и других механизмов, которые обеспечивают точное копирование ДНК нашими клетками. Без подобных предосторожностей мутации происходили на каждом шагу. Только самые простые белки могли просуществовать хотя бы несколько поколений и не исчезнуть в результате мутаций; сложные белки, производство которых проходило по сложной и длинной генетической инструкции, были очень уязвимы.

Система воспроизводства была так ненадежна, что тогдашние гены имели больше шансов перейти от одного микроорганизма к другому, чем передаться по наследству следующему поколению. Древние микробы были очень просты, поэтому блуждающие гены могли с легкостью встраиваться в структуру своего нового дома и сразу же браться за дело – разлагать пищу, выбрасывать отходы и выполнять другие необходимые домашние дела. Понятно, что паразитические гены тоже могли проникать в живые клетки; они заставляли гены хозяина производить свои копии, которые затем покидали клетку и заражали другие микроорганизмы.

Вёзе утверждает, что во времена молодости Земли не было и не могло быть никакой генеалогии. Жизнь еще не разделилась на отдельные наследственные линии, и потому нельзя сказать, что общим предком всех живых существ на Земле было существо какого‑то определенного вида. Наш общий предок – все микроорганизмы, обитавшие в то время на Земле, некая изменчивая матрица генов, покрывавшая всю планету.

Но наступило время, когда блуждающим генам стало труднее устраиваться в новом хозяине как дома. Начали появляться новые, более сложные генные системы, способные лучше выполнять свои обязанности. Для сравнения представьте: сезонный рабочий, умеющий собирать фрукты, ворошить сено или кидать навоз, появляется на современной ферме, где работники привыкли управлять сложным оборудованием при помощи компьютеров. Он не сможет вписаться в систему. Чем более специализированными становились генные системы, тем точнее они воспроизводили ДНК. Теперь гены можно было передавать по наследству, от поколения к поколению, формируя очевидные наследственные линии. Из мутного пруда ранней эволюции вышли три базовые ветви жизни: эукариоты, архей и бактерии. Они разделились и полностью обособились, но каждая из них несла в себе набор самых разных генов – как напоминание о смешанном происхождении.

Если Вёзе окажется прав, древо жизни снова придется перерисовывать – и тогда оно будет напоминать уже не куст, а мангровые заросли, где множество корней в основании будет символизировать смешение генов на раннем этапе развития жизни. Постепенно из путаницы корней формируются три мощных ствола, но их ветви многократно переплетаются друг с другом.

Date: 2015-09-22; view: 356; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию