Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Отражение и преломление света на границе раздела двух диэлектриков. Формулы Френеля. Полное отражение и его применение в технике. Волноводы и световоды. Брюстеровское отражение





Отражение и преломление волнового вектора на границе двух диэлектриков даёт плоская электромагнитная волна, которая попадает на плоскую границу раздела двух однородных и изотропных диэлектриков с проницаемостями и (рис.3.4.4). Магнитные проницаемости полагаем равными единице. Кроме распространяющейся во втором диэлектрике плоской преломлённой волны , возникает плоская отражённая волна, распространяющаяся в первом диэлектрике . На границе двух диэлектриков должно выполняться условие

, (3.4.1)

где и - тангенциальные составляющие напряжённости электрического поля в первой и во второй среде соответственно.

, определяющий направление распространения падающей волны, лежит в плоскости чертежа (рис.3.4.4). Направ­ление нормали к поверхности раздела охарактеризуем вектором . Плоскость, в которой лежат векторы и , называется плоскостью падения волны. Возьмем линию пересечения плоско­сти падения с границей раздела диэлектриков в качестве оси . Ось направим перпендикулярно к плоскости раздела диэлектри­ков. Тогда ось будет перпендикулярна к плоскости падения, а вектор окажется направленным вдоль оси (рис.3.4.4). Из соображений симметрии ясно, что век­торы и могут лежать лишь в плоскости падения (среды однородны и изотропны).

Колеба­ния вектора в плоской электромагнитной волне, распространяю­щейся в направлении вектора , описываются функцией

Напряженности в отраженной и преломленной волнах опреде­ляются аналогичными выражениями:

,

( и - начальные фазы соответствующих волн).

Показанные на рис. 3.4.2 углы и называются углом падения, углом отражения и углом преломления.

.

и = ; = ;

.

Отсюда вытекает, что

, (3.4.4)

Закон отражения света, согласно которому отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения; угол отражения равен углу падения.

. (3.4.5)

Закон преломления света, который формулируется следующим образом: преломлен­ный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения;

Величина называется относительным показателем преломления второго ве­щества по отношению к первому.

.

закон преломления в виде

.

при переходе света из оптически более плотной среды в оптически менее плотную луч удаляется от нор­мали к поверхности раздела сред. Увеличение угла падения со­провождается более быстрым ростом угла преломления , и по достижении углом значения

Предельный угол.

Энергия, которую несет с собой падающий луч, распределяется между отраженным и преломленным лучами. По мере увеличения угла падения интенсивность отраженного луча растет, интенсивность же преломленного луча убывает, обращаясь в нуль при предельном угле. При углах падения, заключенных в пределах от до , световая волна проникает во вторую среду на расстояние порядка длины волны и затем возвращается в первую среду. Это явление называется полным внутренним отражением.

Обозначим электрическую составляющую в падающей, отраженной и преломленной волнах соответственно через , и , а магнитную составляющую через , и .

колебания векторов и происходят вдоль того же направления, что и колебания вектора . Аналогично колебания векторов и происходят вдоль направления вектора .

В данном случае нормальные составляющие векторов и равны нулю. Поэтому тангенциальные составляющие этих векторов совпадают с самими векторами. Модули векторов и связаны соотношением . Тройка вектора , , образует правовинтовую систему:

. (3.4.6)

Аналогичные соотношения имеют место и для векторов в отраженной и преломленной волнах.

Условия непрерывности тангенциальных составляю­щих векторов и

, (3.4.7)

. (3.4.8)

Заменив в (3.4.8) векторы векторами и

.

Векторы и взаимно перпендикулярны, тогда

. (3.4.9)

Решив совместно уравнения (3.4.7) и (3.4.9), получим

, (3.4.10)

. (3.4.11)

Подставив в выражение значения (3.4.10) и (3.4.11) для и

.

Это соотношение получено для мгновенных значений . Аналогич­ное соотношение имеет место и для амплитудных значений свето­вого вектора:

. (3.4.12)

выражает закон сохранения энергии.

 

 

Коэффициент отражения и коэффициент пропускания световой волны

, (3.4.13)

где - показатель преломления второй среды по отно­шению к первой.

Для коэффициента пропускания получается выражение

.

, (3.4.14)

Закон Брюстера

 

отраженный луч полностью поляризован, он содержит только колебания, перпендикулярные плоскости падения. Степень поляризации при угле падения достигает наибольшего значения, однако преломленный луч остается частично поляризованным. угол - угол Брюстера.

при произвольном угле падения и соответствующем ему угле преломления коэффициенты отражения линейно-поляризованного света, плоскость поляризации которого перпендикулярна плоскости падения () и параллельна ей (), определяются выражениями:

При падении под углом Брюстера и коэффициент отражения , т.е. отраженный свет будет полностью линейно поляризован в плоскости, перпендикулярной плоскости падения.

Явление полного отражения света лежит в основе принципа действия волноводов и световодов. Волновод – это устройство или канал в неоднородной среде, вдоль которого могут распространяться направленные волны. Различают экранированные волноводы, образованные зеркально отражающими стенками, а также системы, в которых поперечная локализация волн обусловлена полным внутренним отражением.

Световод (оптический волновод) – это закрытое устройство для направленной передачи света. В открытом пространстве его передача возможна только в пределах прямой видимости и связана с потерями, Переход к световодам позволяет значительно уменьшить потери световой энергии при ее передаче на большие расстояния, а также передавать световую энергию по криволинейным трассам.

Наибольшее распространение получили волновые световоды. Такой световод представляет собой тонкую нить из оптически прозрачного материала, сердцевина которой радиуса а 1 имеет показатель преломления п 1, а внешняя оболочка с радиусом а 2 имеет показатель преломления . Поэтому лучи, распространяющиеся под достаточно малыми углами к оси световода, испытывают полное внутреннее отражение на поверхности раздела сердцевины и оболочки и распространяются только по сердцевине.

Луч распространяется в положительном направлении оси Z вблизи оси расстояние от оси Z обозначим r. Запишем закон преломления света на бесконечно тонком слое , в котором показатель преломления изменяется от n (r) до n (r+ ):

.

.

Поскольку , в параксиальном приближении можно записать:

.

 

Тогда уравнение распространения луча:

Date: 2015-09-03; view: 1209; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию