Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Геном прокариот. Структура гена прокариот. Геном плазмид. Транспозоны и IS- элементы у прокариот



Основной чертой молекулярной организации прокариот является отсутствие в их клетках ядра, отгороженного ядерной мембраной от цитоплазмы. Отсутствие ядра является лишь внешним проявлением особой организации генома у прокариот.

Геном прокариот построен очень компактно. Количество некодирующих последовательностей нуклеотидов минимально. Многие механизмы регуляции экспрессии генов, использующиеся у эукариот, никогда не встречаются у прокариот. Простота строения генома прокариот объясняется их упрощенным жизненным циклом.

Ген — единица наследственной информации, занимающая определенное положение в геноме или хромосоме и контролирующая выполнение определенной функции в организме. По результатам исследования прокариот, главным образом Е. сoll, ген состоит из двух основных элементов: регуляторной части и собственно кодирующей части. Регуляторная часть гена обеспечивает первые этапы реализации генетической информации, заключенной в структурной части гена; структурная часть гена содержит информацию о структуре кодируемого данным геном полипептида. Количество некодирующих последовательностей в структурной части гена у прокариот минимально. 5'-конец прокариотического гена имеет характерную организацию регуляторных элементов, особенно на расстоянии 50 — 70 н.п. от точки инициации транскрипции. Этот участок гена называют промотором. Он важен для транскрипции гена, но сам в РНК не транскрибируется. Противоположный 3'-конец — терминаторная область, необходимая для тер-минации транскрипции. В РНК он также не транскрибируется. Транскрипция начинается со стартовой точки (+1).

Последовательности ДНК, являющиеся сигналами остановки транскрипции, находятся на 3'-конце гена и называются транскрипционными терминаторами. Они содержат последовательности, которые в транскрибируемой РНК формируют структуру шпильки.

Кроме хромосомы у большинства бактерий существуют другие способные к автономной репликации структуры — плазмиды. Это двуцепочечные кольцевые ДНК размером от 0,1 до 5% размера хромосомы, несущие гены, необязательные для клетки-хозяина, или гены, необходимые лишь в определенной среде. Именно такие внехромосомные элементы и содержат гены, которые придают клеткам наследуемую устойчивость к одному или нескольким антибиотикам. Они получили название факторов резистентности, или К-факторов. Другие плазмиды определяют болезнетворность патогенных бактерий, например патогенных штаммов Е. соli, возбудителей чумы и столбняка. Третьи — определяют способность почвенных бактерий использовать необычные источники углерода, например углеводороды нефти.



«Плазмида (внехромосомный генетический элемент) представляет собой репликон, который стабильно наследуется во внехромосомном состоянии». Однако это определение оставляет открытыми вопросы о том, являются ли плазмиды организмами или нет, и о месте плазмид в живой природе.

Поскольку плазмиды имеют собственные гены, которые наделяют их специфическими наследственными признаками и способностью к размножению, они должны быть, несомненно, отнесены к живым организмам. Плазмиды обладают большим сходством с вирусами, поэтому их следует объединить с ними в одно царство в качестве самостоятельного класса. С вирусами их объединяют следующие общие фундаментальные признаки:

1) подобно вирусам, плазмиды не имеют собственной белоксинтезирующей системы;

2) как и у вирусов, у них нет собственной системы мобилизации энергии;

3) плазмиды, как и вирусы, не способны к росту и бинарному делению, они размножаются путем воспроизведения себя из собственного генома (путем саморепликации его);

4) плазмиды, подобно вирусам, являются абсолютными внутриклеточными паразитами.

Вместе с тем плазмиды существенным образом отличаются от вирусов, и поэтому они должны рассматриваться как самостоятельная, обособленная от вирусов группа организмов. Главные отличия их от вирусов следующие:

1. Геном плазмид представлен только двунитевой ДНК, у вирусов же имеется более 10 вариантов РНКи ДНК-геномов. Правда, у некоторых грамположительных бактерий плазмиды существуют не только в виде двунитевых молекул ДНК, но и в виде однонитевых. Однако каждая из них соответствует одной из двух нитей плазмидной ДНК (на долю таких одно нитевых молекул приходится не более 1/3 общего количества копий плаз миды), и в результате репликации, происходящей по типу «крутящегося кольца», однонитевая молекула превращается в двунитевую молекулу плазмидной ДНК.

2. Плазмиды в отличие от вирусов и других микроорганизмов вооб ще не имеют никакой оболочки. Они представляют собой «голые» геномы. Это их главная биологическая особенность.

3. В связи с отсутствием белковой оболочки размножение плазмид происходит только путем саморепликации их ДНК и не требует синтеза структурных белков и процессов самосборки.

4. Средой обитания вирусов являются клетки бактерий, растений и животных. Средой обитания плазмид только бактерии.

5. В отличие от вирусов плазмиды обладают системами генов, которые наделяют их способностью к самопереносу или к мобилизации на пе ренос от клетки к клетке.



Для плазмид как живых существ характерны следующие свойства, частью присущие только им и контролируемые их специфическими генами:

1. Саморегулируемая репликация. Эта функция свойственна всем живым организмам. В составе плазмидных ДНК имеются фиксированная точка ori (точка начала репликации) и соответствующие гены, контроли рующие репликацию. Репликация мелких плазмид требует, очевидно, до полнительного участия генов клетки-хозяина.

2. Явление поверхностного исключения. Этот механизм не позволяет проникнуть в клетку, уже содержащую плазмиду, другой родственной ей плазмиде. Поверхностное исключение обеспечивается синтезом под контролем генов плазмиды особых белков наружной мембраны, которые препятствуют установлению контакта этой клетки с клеткой, несущей такую же плазмиду, или подавляют конъюгативный метаболизм ДНК этой плазмиды.

3. Явление несовместимости. Суть его заключается в том, что две близкородственные плазмиды не могут стабильно сосуществовать в одной клетке, одна из них подвергается элиминации (удалению).

4. Контроль числа копий плазмиды на хромосому клетки. Различают малокопийные (1 4 копии) и многокопийные плазмиды (12 38 копий, например у плазмиды R6K). Наличие собственных генов репликации по зволяет плазмиде осуществлять последнюю независимо от каких-либо со бытий хромосомной репликации или клеточного цикла клетки-хозяина.

5. Контроль стабильного сохранения плазмид в клетке-хозяине (кон троль стабильного поддержания).

6. Контроль равномерного распределения дочерних плазмид в до черние бактериальные клетки.

7. Способность к самопереносу (у конъюгативных плазмид).

8. Способность к мобилизации на перенос (у неконъюгативных плазмид).

9. Способность наделять клетку-хозяина дополнительными важными для него биологическими свойствами, способствующими выживанию бак терий, а следовательно, и плазмид в природе.

Транспозоны — это участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.

Транспозоны формально относятся к так называемой некодирующей части генома — той, которая в последовательности пар оснований ДНК не несёт информацию об аминокислотных последовательностях белков, хотя некоторые классы мобильных элементов содержат в своей последовательности информацию о ферментах, транскрибируются и катализируют передвижения, например, ДНК-транспозоны и ДДП-1 кодируют белки транспозаза, БОРС1 и БОРС2. У разных видов транспозоны распространены в разной степени: так, у человека транспозоны составляют до 45 % всей последовательности ДНК, у плодовой мухи часть мобильных элементов составляет лишь 15-20 % всего генома. У растений транспозоны могут занимать основную часть генома — так, у кукурузы с размером генома в 2,3 миллиардов пар оснований по крайней мере 85 % составляют различные мобильные элементы.

МИГРИРУЮЩИЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ (мобильные гены, прыгающие гены), дискретные фрагменты (сегменты) ДНК, способные встраиваться в разные участки генома; их расположение на хромосомах может меняться как в процессе историч. развития мира организмов, так и в пределах жизни одного индивидуума. Найдены практически во всех изученных организмах - от бактерий до человека. Они весьма разнятся по своему нуклеотидному составу и той роли, к-рую они играют в клетке.

У прокариот (бактерии и синезеленые водоросли) выделено неск. осн. групп мигрирующих генетических элементов-IS- и Tn-элементы, эписомы, а также нек-рые бактериофаги, или фаги (вирусы бактерий, способные ее поражать, репродуцироваться в ней и вызывать ее гибель). IS-элементы-простые вставочные (ин-серционные) последовательности (обозначаются - в зависимости от их нуклеотидного состава номерами IS1, IS2 и т.д.); содержат от 700 до 1500 пар нуклеотидов. Эти сегменты ДНК имеют инвертир. повторы на концах, содержащие обычно неск. десятков нуклеотидных пар, и не содержат никаких генов, кроме тех, к-рые необходимы для их перемещения (транспозиции) по геному. Они встречаются в нек-рых плазмидах (внехромосомные носители наследственности) и умеренных фагах (способны существовать в клетке в форме профага). Так, у разных штаммов бактерии Escherichia coli (E. coli) присутствует в геноме 19 копий IS1-элементов. Большинство др. IS-элементов также представлено в хромосомах разных штаммов E. coli мн. Копиями.

 








Date: 2015-09-02; view: 373; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.025 sec.) - Пожаловаться на публикацию