Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Альтернативные истории





 

v В 1999 г. Команда физиков в Австрии выпустила пучок шарообразных, как футбольные мячи, молекул в направлении экрана. Эти молекулы, каждая из 60 атомов углерода, иногда называют баккиболлс - мячи Бакки, потому что архитектор Бакминстер Фуллер строил здания именно такой формы. Геодезические купола Фуллера были, вероятно, самыми большими существующими объектами формы футбольного мяча. А бакиболы - самыми маленькими. Экран, в направлении которого прицелились учѐные, фактически имел лишь две прорези, сквозь которые бакиболы и могли пролететь. За стеной, физики расположили аналогичный экран для обнаружения и подсчѐта появляющихся молекул. Бакиболы. Бакиболы как микроскопические футбольные мячи, сделанные из атомов углерода. Задайся мы целью поставить аналогичный эксперимент, используя настоящие футбольные мячи, нам бы понадобился игрок с несколько "сбитым прицелом", но способный выполнять удары по мячу ритмично, с заданной скоростью. Мы бы поставили этого игрока перед стенкой, в которой есть два отверстия. С обратной стороны стены, параллельно ей, мы бы разместили больших размеров сетку. Большинство ударов нашего игрока попало бы в стенку и отскочило, но некоторые прошли бы либо сквозь первое отверстие или сквозь второе и попали бы в сеть. Если диаметр отверстия в стене был лишь немного больше мяча, два очень узких параллельных потока появились бы на другой еѐ стороне. Если же отверстия были чуть шире,- каждый поток разойдѐтся небольшим веером, как показано на рисунке ниже. Заметим, что если мы закроем одно из отверстий соответствующий поток мячей сквозь него больше не пройдѐт, но на другой поток это никакого эффекта не окажет. Если мы снова откроем второй промежуток, это только увеличит количество мячей, приземлившихся в любой данной точке с другой стороны, где мы получим все мячи из промежутка, остававшегося открытым, плюс мячи из промежутка который только открыли. Другими словами, то, что мы наблюдаем, когда оба промежутка открыты, является суммой того, что мы наблюдаем с каждым промежутком в стене, открытым по отдельности. Это - реальность, к которой мы привыкли в повседневной жизни. Но это не то, что обнаружили австрийские исследователи, когда они запустили свои молекулы. Двухщелевой Футбол. Игрок, посылающий мячи в стену со щелями, произвел бы очевидный результат. В австрийском эксперименте, открывание второго промежутка действительно увеличивало число молекул, достигших экрана в одних точках, но сокращало их число в других, как на рисунке ниже. Фактически, когда оба промежутка были открытыми, были пятна, где никакие мячи не приземлились, но где шары приземлялись, когда был открыт только один или другой промежуток. Это кажется очень странным. Как может открытие второго промежутка служить причиной того, что каких-то точек достигло меньшее число молекул? Игра Бакиболами. Когда щелевой экран обстреливается бакиболами, результат отражает незнакомые квантовые эффекты. Мы можем получить ключ к разгадке ответа, исследуя детали. В эксперименте много молекулярных футбольных мячей приземлялись в точку, расположенную на полпути от места, в которое вы ожидали, что они приземлятся, если пройдут и сквозь первый, и сквозь второй промежуток. Чуть дальше центральной позиции приземлялось очень мало молекул, но еще немного дальше от центра снова наблюдалось падение молекул. Эта модель не является суммой моделей, образованных, когда каждый промежуток открыт отдельно, но вы можете узнать ее в Разделе 3 как образец характеристики интерферирующих волн. Участки, где не приземлились молекулы, соответствуют областям, в которых волны, выпущенные из двух промежутков, сошлись не в фазе, и создали гасящую интерференцию; участки, где приземлилось много молекул, относятся к областям, где волны попали в фазу, создав усиливающую интерференцию. В течение двух тысячелетий научной мысли, обычный опыт и интуиция были основой теоретического обоснования. Совершенствуя наши технологии и расширяя круг феноменов, которые мы можем наблюдать, мы начинаем обнаруживать что природа ведет себя таким образом, который все меньше и меньше согласуется с нашим каждодневным опытом и противоречит нашей интуиции, о чем свидетельствует эксперимент с фуллереном. Этот эксперимент является типичным из вида феноменов, которые нельзя объяснить классической наукой, но можно описать тем, что называется квантовой физикой. Как писал Ричард Фейнман, эксперимент с двумя отверстиями, описанный выше, "содержит всю тайну квантовой механики". Принципы квантовой физики были раскрыты в первые десятилетия двадцатого века, после того как Ньютоновской теории оказалось недостаточно для описания природы на атомном - или субатомном - уровне. Фундаментальные теории физики описывают силы природы, и как объекты им противодействуют. Классические теории (например, теория Ньютона) построены на основе отражения каждодневного опыта, в котором материальные объекты уникальны, они могут находиться в определенных местах, перемещаться определенными траекториями и т.д. Квантовая физика помогает понять, как законы природы работают на атомных и субатомных уровнях, но как мы увидим позже более детально, она предлагает совершенно другую концептуальную схему, при которой положение объекта, его траектория и даже его прошлое и будущее точно не определено. Квантовые теории сил, таких как гравитационные или электромагнитные, построены на основе этих положений. Могут ли теории, построенные на основах чуждых повседневному опыту так же объяснять события обыденного опыта, которые были смоделированы с такой точностью классической физикой? Могут, поскольку мы и наша окружающая среда - составные структуры, сделанные из невообразимо большого числа атомов, большего количества атомов, чем существует звезд в видимой Вселенной. И хотя составляющие атомы подчиняются принципам квантовой физики, можно продемонстрировать, что большие скопления, формирующие футбольные мячи, репу и аэробусы - и нас - действительно будут ухитряться избегать дифрагирования через разрезы. Поэтому, хотя компоненты повседневных объектов повинуются квантовой физике, законы Ньютона создают эффективную теорию, которая очень точно описывает, как ведут себя составные структуры, образующие наш повседневный мир. Это могло бы звучать странно, но в науке есть множество примеров, в которых большое скопление, кажется, ведет себя, в некоторой степени, отлично от поведения его отдельных компонентов. Реакция одного нейрона едва ли предскажет реакцию человеческого мозга, равно как и знание о молекуле воды не много говорит вам о поведении озера. В случае квантовой физики, ученые все еще работают, чтобы выяснить детали того, как законы Ньютона возникают из квантовой сферы. Нам точно известно, что составные части всех объектов подчиняются законам квантовой физики, и Законы Ньютона хорошо описывают модель поведения макроскопических объектов, которые состоят из этих квантовых частиц. Но предсказания Ньютоновской теории поэтому соответствуют представлению о реальности, в которой мы развиваемся, как познаем мир вокруг нас. Но уникальные атомы и молекулы взаимодействуют совсем по-другому, чем принято в нашей повседневной жизни. Квантовая физика - новая модель реальности, дающая нам картину Вселенной. Это - картина, в которой у многих понятий, фундаментальных для нашего интуитивного понимания действительности больше, нет значения.

 

v … принцип, что наблюдение системы должно менять ее поведение. Можем ли мы, как мы делаем, когда у нашей начальницы на подбородке пятно горчицы, осторожно наблюдать, но не вмешиваться? Нет. Согласно квантовой физике, Вы не можете "просто" наблюдать за чем-либо. Таким образом, квантовая физика признает, что, чтобы произвести наблюдение, Вы должны взаимодействовать с наблюдаемым Вами объектом. Например, чтобы видеть объект в традиционном смысле, мы светим на него светом. Освещение тыквы окажет на нее, конечно, не большой эффект. Но освещение даже тусклым светом крошечной квантовой частицы - то есть, стрельба в нее фотонами — действительно имеет ощутимый эффект, и опыт показывает, что это изменяет результаты эксперимента точно так, как описывает квантовая физика. Предположим, что, как и раньше, мы направляем поток частиц на барьер в эксперименте с двойной прорезью и собираем данные о первом миллионе прошедших частиц. Когда мы определяем местоположение ряда частиц, оказавшихся в различных точках обнаружения, данные сформируют представленную картину интерференции, и когда мы добавим фазы, связанные со всеми возможными путями частицы от отправной точки А до ее точки обнаружения B, мы обнаружим, что вычисленная нами вероятность попадания в различные точки согласуется с этими данными. Теперь предположим, что мы повторяем эксперимент, на этот раз, освещая прорези светом так, чтобы зафиксировать промежуточный пункт C, через который прошла частица. (C является положением либо одного разреза, либо другого). Это называют информацией "выбора пути", потому что она говорит нам, следовала ли каждая частица от А к прорези 1 и к B, или от А к прорези 2 и к B. Так как мы теперь хорошо знаем, через какую прорезь проходит каждая частица, наша сумма для этой частицы будет теперь включать только пути, которые проходят через прорезь 1, либо только пути, которые проходят через прорезь 2. Она никогда не будет включать и пути, проходящие через прорезь 1, и пути, проходящие через прорезь 2. Поскольку Фейнман объяснил картину интерференции, указав, что пути, которые проходят через одну прорезь, сталкиваются с путями, которые проходят через другую, если Вы включаете свет, чтобы определить, через какую прорезь проходят частицы, тем самым исключая другой вариант, Вы заставите картину интерференции исчезнуть. И действительно, если этот эксперимент выполнить, включение света изменяет результаты с картины интерференции на картину, подобную этой! Кроме того, мы можем изменять эксперимент, используя очень слабый свет, чтобы не все частицы взаимодействовали со светом. В этом случае мы можем получить информацию о выборе пути только для некоторого подмножества частиц. Если мы затем разделим данные о прибытии частицы согласно тому, получали ли мы информацию о выборе пути или нет, мы обнаружим, что данные, имеющие отношение к подмножеству, для которого у нас нет никакой информации о выборе пути, сформируют картину интерференции, а подмножество данных, имеющих отношение к частицам, для которых у нас есть информация о выборе пути, интерференции не покажет. Эта идея имеет важное значение для нашего понятия "прошлого" В Ньютоновой теории предполагается, что прошлое существует в виде определенного ряда событий. Если Вы видите, что ваза, которую Вы купили в Италии в прошлом году, лежит разбитая на полу, а Ваш малыш, стоящий над ней, выглядит застенчиво, Вы можете проследить назад события, которые привели к неприятности: маленькие пальцы разжимаются, ваза падает и разбивается на тысячу частей, как она была обнаружена. Фактически, учитывая полные данные о настоящем, законы Ньютона позволяют вычислить полную картину прошлого. Это совместимо с нашим интуитивным пониманием, что, или неприятное, или счастливое, у мира есть определенное прошлое. Возможно, не было ни одного наблюдения, но прошлое существует так же несомненно, как будто Вы сделали серию его снимков. Но нельзя сказать, что квантовый баккиболл проделал определенный путь от источника до экрана. Мы могли бы точно определить местоположение баккиболла, наблюдая за ним, но между нашими наблюдениями требуются все пути. Квантовая физика говорит нам, что независимо от того, насколько детально наше наблюдение настоящего, (ненаблюдаемое) прошлое, как и будущее, неопределенно и существует только в виде спектра возможностей. У Вселенной, согласно квантовой физике, нет единственного прошлого или истории.

 

Date: 2015-09-02; view: 246; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию