Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Формула полной вероятности. Формула Байеса





24. В ящике содержатся деталей, изготовленных на заводе 1, деталей – на заводе 2 и деталей – заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны , и . Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.

Hi- гипотеза, что деталь изготовлена на i заводе

P(Hi)-вероятность того, что деталь изготовлена на 1 заводе

25. В урну, содержащую шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.

Hi-первоначально в урне i белых шаров

i=0,….20

А- событие, сост, в том, что извлечен белый шар

26. В первой урне 5 белых и 3 черных шара, во второй – 6 белых и 9 черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар – белый?

27. С первого станка-автомата на сборочный конвейер поступает деталей, со 2-го и 3-го – по и соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно , и . Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станках-автоматах, при условии, что она оказалась бракованной.

28. Имеется три одинаковых по виду ящика. В первом ящике 23 белых шара, во втором – 9 белых и 14 черных шаров, в третьем – 23 черных шара. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.

1 ящик 2 ящик 3 ящик
Кол-во шаров 23 23 23
% шаров ко всем 1/3 1/3 1/3
Кол-во белых шаров 23 9 0
% белых шаров к ящику 1 9/23 0

29. В среднем из 100 клиентов банка 53 обслуживаются первым операционистом и 47 – вторым. Вероятности того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет и соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?

n1-1-ый операционист

n2-2-ой операционист

А-событие, сост. в том, что, что потребуется помощь заведующего

30. Имеется 13 монет, из которых 3 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 9 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.

H1-монета хорошая

H2 – бракованная монета

А-событие, состю в том, что при всех бросании монета легла гербом

31. Детали, изготовленные в цехе, попадают к одному из 2-х контролёров. Вероятность того, что деталь попадёт к 1-му контролёру, равна 0,8; ко 2-му – 0,2. Вероятность того, что годная деталь будет признана стандартной 1-м контролёром равна 0,96; 2-м контролёром – 0,98. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролёр.

32. Пассажир может обратиться за получением билета в одну из трёх касс (А,B,C). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0,4;0,5 и 0,1. Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0,4; 0,3 и 0,1. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?

33. В первой урне белых и черных шаров, во второй – белых и черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разных цветов?

Схема Бернулли. Числа . Наиболее вероятное число успехов

34. Вероятность попадания в цель при одном выстреле равна . Сделано выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

35. Отрезок длины поделен на две части длины и соответственно, точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины будет больше или меньше .

М-событие, сост. в том, что на отрезок АС попало не менее 2 точек

М с чертой – событие, сост. в том, что попало 2 точки

Р – вероятность попадания на АС при 1 бросании

36. Вероятность попадания стрелком в цель равна . Сделано выстрелов. Определите наивероятнейшее число попаданий в цель.








Date: 2015-08-07; view: 562; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.006 sec.) - Пожаловаться на публикацию