Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






История развития концепции фотона





Опыт Томаса Юнга по интерференции света на двух щелях (1805 год) показал, что свет может рассматриваться как волна. Таким образом были опровергнуты ранние теории света как потока частиц.

 

 

В большинстве теорий, разработанных до XVIII века, свет рассматривался как поток частиц. Одна из первых таких теорий была изложена в «Книге об оптике» Ибн ал-Хайсамом в 1021 году. В ней учёный представлял световой луч в виде потока мельчайших частиц, которые «испытывают нехватку всех заметных качеств, кроме энергии». Так как подобные модели не смогли объяснить такие явления как рефракция, дифракция и двойное лучепреломление, была предложена волновая теория света, основателями которой стали Рене Декарт (1637), Роберт Гук (1665), и Христиан Гюйгенс (1678). Однако модели, основанные на идее дискретного строения света, оставались доминирующими, во многом из-за влияния авторитета Исаака Ньютона, придерживавшегося этих теорий. В начале XIX века Томас Юнг и Огюстен Френель наглядно продемонстрировали в своих опытах явления интерференции и дифракции света, после чего примерно к 1850 году волновые модели стали общепринятыми. В 1865 году Джеймс Максвелл предположил в рамках своей теории, что свет — это электромагнитная волна. В 1888 году эта гипотеза была подтверждена экспериментально Генрихом Герцем, обнаружившим радиоволны.

В 1900 году волновая теория Максвелла, рассматривающая электромагнитное излучение как колебания электрического и магнитного полей выглядела законченной. Однако некоторые эксперименты, проведённые позже, в рамках этой теории объяснения не нашли. Это привело к идее о том, что энергия световой волны должна излучаться и поглощаться в виде «квантов» величиной hν. Дальнейшие эксперименты показали, что эти световые кванты также обладают импульсом, поэтому оказалось возможным рассматривать их как элементарные частицы.

Волновая теория Максвелла не смогла, однако, объяснить всех свойств света. Согласно этой теории энергия световой волны должна зависеть только от её интенсивности, но не от частоты. На самом же деле результаты некоторых экспериментов показали обратное: переданная от света атомам энергия зависит только от частоты света, а не от интенсивности. Например, некоторые химические реакции могут начаться только при облучении вещества светом, частота которого выше определённого порогового значения; излучение, частота которого ниже этого значения, вне зависимости от интенсивности, не может инициировать реакцию. Аналогично, электроны могут быть вырваны с поверхности металлической пластины только при облучении её светом, частота которого выше определённого значения, так называемой красной границы фотоэффекта; энергия вырванных электронов зависит только от частоты света, но не от его интенсивности.

Исследования свойств излучения абсолютно чёрного тела, проходившие в течение почти сорока лет (1860—1900), завершились выдвижением гипотезы Макса Планка о том, что энергия любой системы при излучении или поглощении электромагнитного излучения частоты может измениться только на величину, кратную энергии кванта (то есть дискретно), где — постоянная Планка. Альбертом Эйнштейном было показано, что такое представление о квантовании энергии должно быть принято, чтобы объяснить наблюдаемое тепловое равновесие между веществом и электромагнитным излучением. На этой же основе им был теоретически описан фотоэлектрический эффект, за эту работу Эйнштейн получил в 1921 году Нобелевскую премию по физике. Напротив, теория Максвелла допускает, что электромагнитное излучение может обладать какой угодно энергией (то есть не квантуется).

Многие физики предполагали изначально, что квантование энергии есть результат какого-то неизвестного свойства материи, поглощающей и излучающей электромагнитные волны. В 1905 году Эйнштейн предположил, что квантование энергии — свойство самого электромагнитного излучения. Признавая справедливость теории Максвелла, Эйнштейн указал, что многие аномальные в то время результаты экспериментов могут быть объяснены, если энергию световой волны локализовать в подобные частицам кванты, которые движутся независимо друг от друга, даже если волна непрерывно распространяется в пространстве. В 1909 и 1916 годах, Эйнштейн показал, исходя из справедливости закона излучения абсолютно чёрного тела, что квант энергии должен также обладать импульсом . Импульс фотона был обнаружен экспериментально Артуром Комптоном, за эту работу он получил Нобелевскую премию по физике в 1927 году. Однако вопрос согласования волновой теории Максвелла с экспериментальным обоснованием дискретной природы света оставался открытым. Ряд авторов утверждали, что излучение и поглощение электромагнитных волн происходит порциями, квантами, однако процессы распространения волны непрерывны. Квантовый характер явлений излучения и поглощения доказывает наличие у микросистем, в том числе у электромагнитного поля, отдельных энергетических уровней и невозможность микросистемы обладать произвольной величиной энергии. Корпускулярные представления хорошо согласуются с экспериментально наблюдаемыми закономерностями излучения и поглощения электромагнитных волн, в частности, с закономерностями теплового излучения и фотоэффекта. Однако по их мнению экспериментальные данные свидетельствуют, что квантовые свойства электромагнитной волны не проявляются при распространении, рассеянии, дифракции электромагнитных волн, если они не сопровождаются потерей энергии. В процессах распространения электромагнитная волна не локализована в определённой точке пространства, ведёт себя как единое целое и описывается уравнениями Максвелла. Решение было найдено в рамках квантовой электродинамики (см. раздел корпускулярно-волновой дуализм ниже) и её преемницы Стандартной модели.

В соответствии с квантовой электродинамикой электромагнитное поле в объёме куба с длиной ребра d можно представить в виде плоских стоячих волн, сферических волн или плоских бегущих волн . Объём при этом считается заполненным фотонами с распределением энергии , где n — целое число. Взаимодействие фотонов с веществом приводит к изменению числа фотонов n на (излучение или поглощение).

Date: 2015-08-06; view: 700; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию