Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Холл эффектісі





Дәріс 1-бөлім

МАГНИТ ӨРІСІ

Био-Савар-Лаплас заңы және оны қолдану

Жылы дат физигі Х. Эрстед тогы бар өткізгіштердің магнит стрелкасына әсерін байқап, оны магнит өрісі деп атады. Бұл өріс оған енгізілген магнит стрелкалары мен тогы бар өткізгіштерге бағыттаушы әсер етеді. 1820 жылы француз ғалымдары Био және Савар әртүрлі пішінді токтар үшін магнит өрістерін зерттеді. Бұл ғалымдардың зерттеулері бойынша, барлық жағдайларда магнит өрісінің индукциясы, осы өрісті тудыратын токқа І тура пропорционал, ал индукциясы анықталатын нүктеге дейінгі арақашықтықтың квадратына кері пропорционал болады екен. Тәжірибеден алынған нәтижелерді тұжырымдап, Лаплас ұзындығы dl ток элементінен пайда болатын магнит өрісінің индукциясын анықтайтын өрнекті тапты.

 
 

1.1-сурет. векторының бағытын анықтау.

 

Өрнекті жазу түрі оны интегралдағанда тәжірибе нәтижелерімен сәйкес келетін магнит өрісінің мәні шығатындай етіп алынған:

, (1.1)

мұндағы – токтың элементар бөлігімен бірдей болатын және ток жүретін бағыт бойынша алынған вектор, – токтың элементар бөлігінен магнит индукциясы анықталатын нүктеге жүргізілген радиус-вектор. (1.1) өрнегі Био-Савар-Лаплас заңының векторлық түрі болып табылады. векторы мен векторлары арқылы өтетін жазықтыққа перпендикуляр. Магнит индукциясы векторының модулі келесі өрнекпен анықталады:

, (1.2)

мұндағы a мен арасындағы бұрыш.

(1.2) өрнегі Био-Савар-Лаплас заңының скалярлық түрі. Магнит өрісі үшін суперпозиция принципі орындалады: берілген нүктедегі бірнеше токтардың тудыратын магнит өрісінің қорытқы индукция векторы осы нүктедегі әрбір ток тудыратын өрістердің магнит индукцияларының векторлық қосындысына тең:

. (1.3)

1. Био-Савар-Лаплас заңын пайдаланып тогы бар шексіз ұзын түзу өткізгіштің төңірегіндегі магнит өрісінің индукциясын анықтауға болады. Тогы бар шексіз ұзын түзу өткізгіштің центрінен өткізгішке перпендикуляр R қашықтықтағы нүктедегі магнит индукциясы:

. (1.4)

2. Дөңгелек токтың центріндегі магнит өрісінің индукциясы:

. (1.5)

1.2 Магнит өрісінің тоғы бар өткізгіштерге әсері.

Ампер заңы. Параллель токтардың әсерлесуі.

Тәжірибе, тогы бар өткізгішке магнит өрісі тарапынын күш әсер ететіндігін көрсетеді. Магнит өрісінде орналасқан dl ток элементіне әсер етуші күш Ампер ашқан заңмен өрнектеледі. Ампер заңының математикалық өрнегі:

, (1.6)

мұндағы І – ток күші, элементі орналасқан нүктедегі магнит индукциясы. Ампер күші әруақытта және векторлары жатқан жазықтыққа перпендикуляр болады.Ампер күшінің бағытын жалпы векторлық көбейту ережесі (бұрғы ережесі) бойынша анықтауға болады. Практикада Ампер күшінің бағытын сол қол ережесімен анықтайды. Сол қол ережесі бойынша: сол қолымыздың алақанына векторы перпендикуляр кіретіндей етіп, ал тік төрт саусақтың бағытын тоқтың бағытына бағыттасақ,онда тік бұрышқа бұрылған бас бармақ Ампер күшінің бағытын көрсетеді.

Ампер күшінің модулі, яғни оның скалярлық түрі мына формуламен өрнектеледі:

dF= І B dl sіna, (1.7)

мұндағыa – және векторлары арасындағы бұрыш. Ампер заңының көмегімен екі параллель, шексіз ұзын, түзу токтардың әсерлесу күшін төмендегі өрнек арқылы анықтауға болады:

. (1.8)

Бұл формула Бірліктердің Халықаралық Жүйесіндегі (БХЖ) негізгі электрлік өлшем бірлігі – амперді анықтау үшін негізгі өрнек болып табылады. Ампер – екі шексіз ұзын, түзу, параллель өте кіші дөңгелек қимасы бар, вакуумда (m=1) бір-бірінен 1 метр қашықтықта орналасқан және әр метр ұзындығында Н күшімен әсерлесетін өткізгіштер арқылы ағатын, өзгермейтін ток күшіне тең шама. Магнит тұрақтысы m0-дің сандық мәнін есептеп шығарайық. Екі параллель өткізгіш вакуумда (m=1) орналасатын болса, онда өткізгіштің бірлік ұзындығындағы әсерлесу күші:

. (1.9)

Ампердің анықтамасына сәйкес, І1 = І2 =1А және R = 1м үшін болады. Осыларды (1.9)формулаға қоятын болсақ:

.

Бұдан:

, (1.10)

мұндағы генри (Гн) – индуктивтіліктің өлшем бірлігі. Ампер заңы сонымен бірге, магнит индукциясының (В) өлшем бірлігін анықтауға мүмкіндік береді. Егер тогы бар өткізгіштің элементі магнит өрісінің бағытына перпендикуляр () болса, онда Ампер заңы былай жазылады:

dF=ІBdl,

бұдан:

. (1.11)

Магнит индукциясының өлшем бірлігі – тесла (Тл). 1 Тл - өріс бағытына перпендикуляр орналасқан түзу сызықты өткізгіш арқылы 1 А ток ағатын болса, сол өткізгіштің әрбір метр ұзындығына 1 Н күшпен әсер ететін біртекті магнит өрісінің индукциясы:

.

 

1.3 Қозғалыстағы зарядқа магнит өрісінің әсері. Лоренц күші

Индукциясы () магнит өрісінде () жылдамдықпен қозғалатын зарядқа магнит өрісі тарапынан белгілі бір бағытта күш әсер етеді. Бұл әсер Лоренц күші деп аталады. Бұл күш заряд (q), жылдамдық () және индукция векторы () шамаларына тәуелді болады, оның бағыты және векторлары арқылы анықталады:

. (1.12)

(1.12) өрнегі Лоренц күшінің векторлық түрдегі формуласы болып табылады.

Лоренц күшінің модулі (немесе Лоренц күшінің скалярлық түрі):

, (1.13)

мұндағы a – және векторларының арасындағы бұрыш. Егер зарядталған бөлшек тыныштық қалыпта ( =0) болса, онда оған магнит өрісі тарапынан ешқандай күш әсер етпейді. Магнит өрісі тек қана қозғалыстағы зарядтарға әсер етеді. Лоренц күші және векторлары орналасқан жазықтыққа пенпендикуляр болып,оның бағыты векторлық көбейтінді арқылы анықталады. Зарядтың шамасы теріс болса, күш қарама – қарсы бағытталған болады. Лоренц күшінің бағытын сол қол ережесі бойынша да анықтауға болады (ток пен оң заряд бағыты бірдей деп есептегенде). Лоренц күші зарядталған бөлшектің қозғалыс бағытына перпендикуляр болғандықтан ешқандай жұмыс атқарылмайды. Олай болса бөлшектің жылдамдығы да, оның кинетикалық энергиясы да өзгермейді. Лоренц күші тек бөлшектің қозғалыс бағытын ғана өзгертеді. Демек, біртекті магнит өрісінде қозғалатын зарядталған бөлшек шама жағынан тұрақты нормаль үдеуге ие болады.

Холл эффектісі

Сыртқы магнит өрісінің индукция сызықтарына перпендикуляр орналастырлыған өткізгіш пластинаның (1.2-сурет) бойымен тығыздығы ток жүргенде, пластинаның астыңғы және үстіңгі жақтары арасында потенциалдар айырымы, яғни мен бағыттарына перпендикуляр бағытта электр өрісі пайда болады. Бұл құбылыс Холл эффектісі деп аталады. Бұл эффектіні магнит өрісінде қозғалатын электр зарядтарына әсер етуші Лоренц күші арқылы түсіндіруге болады.

 
 

1.2-сурет. Холл эффектісінің сұлбасы.

Ток тығыздығының бағыты суреттегідей белгілі болса,оңнан солға қарай қозғалыс жасайтын электронға әсер ететін Лоренц күші жоғары қарай бағытталған. Пластинаның жоғарғы жағында – электрондардың молдығы, ал пластинаның төменгі жағында – электрондардың жетіспеушілігі болады. Сонымен, пластиналардың арасындатөменнен жоғары қарай бағытталған көлденең электр өрісі пайда болады.Бұл өрістің кернеулігі Лоренц күшін теңгере алатын шамаға жеткенде, көлденең бағытта зарядтардың стационар таралып жайғасуы орнайды. Бұл жағдайда:

немесе , (1.14)

мұндағы – Холл эффектісі нәтижесінде пайда болатын көлденең потенциалдар айырмасы; а – пластинаның қалыңдығы; u– электрондардың реттелген қозғалысының орташа жылдамдығы. Ток күшін І, өткізгіштің бірлік көлеміндегі зарядтар санын n және олардың қозғалыс жылдамдығы арасындағы қатынасты пайдаланып, өткізгіштегі электрондардың реттелген қозғалысының орташа жылдамдығын табамыз:

, бұдан ,

мұндағы d – пластина ені, n – электрондардың концентрациясы.Жылдамдықтың u бұл мәнін (1.14) теңдеуіне қоятын болсақ:

. (1.15)

Бұл (1.15)формулада – затқа тәуелді Холл тұрақтысы.

. (1.16)

Көлденең потенциалдар айырымы ток күшіне (І), магнит өрісі индукциясына (B) тура пропорционал да, пластина қалыңдығына (d) кері пропорционал. Холл тұрақтысы белгілі болса, ол арқылы өткізгіштік сипаты мен тасымалдаушылардың заряды белгілі жағдайда, өткізгіштегі ток тасымалдаушылардың концентрациясын анықтауға болады. Холл тұрақтысының таңбасы ток тасымалдаушылардың зарядының е таңбасымен бірдей болғандықтан, Холл тұрақтысы бойынша шала өткізгіштердің өткізгіштік табиғаты туралы тұжырым айтуға болады.

Date: 2015-07-22; view: 4014; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию