Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Изотипы, аллотипы и идиотипы иммуноглобулинов





В классической серологии для характеристики иммуноглобулинов используют не только понятие изотипа, но и такие понятия, как аллотипы и идиотипы конкретных молекул иммуноглобулинов. Эти понятия обусловлены различиями между молекулами иммуноглобулинов, которые можно выявить по реакции данных белков с АТ к ним. Для этого лабораторных животных иммунизируют так или иначе выделенными препаратами иммуноглобулинов и получают антисыворотки.

Во-первых, существует легко выявляемая с помощью антисывороток общность иммуноглобулинов одного изотипа у всех особей данного вида животных (видовая антиклассовая/подклассовая или антиизотипическая специфичность), т.е. изотипами иммуноглобулинов называют варианты классов и подклассов (вместе взятые) иммуноглобулинов по тяжёлым цепям. У человека есть 9 изотипов: М (IgM), G1 (IgG1), G2 (IgG2), G3 (IgG3), G4 (IgG4), A1 (IgA1), А2 (IgA2), E (IgE), D (IgD). Но отдельные особи одного вида продуцируют несколько отличающиеся варианты иммуноглобулинов в пределах одноимённого изотипа — это аллельные варианты, или аллотипы, иммуноглобулинов. Факт существования аллотипов свидетельствует о некотором генетическом полиморфизме внутри вида по локусам C–генов как лёгких, так и тяжёлых цепей.

Антисыворотки против уникальных вариабельных участков молекул иммуноглобулинов называют антиидиотипическими, а соответствующие эпитопы в молекуле АТ — идиотипом АТ (idious — уникальный; не такой, как другие). Таким образом, идиотип АТ — это вариант уникального антигенсвязывающего участка молекулы иммуноглобулина.

Перечислим свойства иммуноглобулинов (человека) разных классов (табл. 4.2).

Таблица 4.2. Свойства человеческих иммуноглобулинов

  IgG1 IgG2 IgG3 IgG4 IgM IgA1 IgA2 IgD IgE
Свойство Тяжёлая цепь
  g1 g2 g3 g4 m a1 a2 d e
Мол. масса, ´1000                  
Концентрация в сыворотке крови, мг/мл       0,5 1,5   0,5 0,03 3x10-5– 5x10-5
Время полураспада в крови, сут                  
Активация комплемента по классическому пути + + +++ ++++
Связывание с Fc–Рц фагоцитов +++ + +
Связывание с FceRI тучных клеток и базофилов +++
Способность нейтрализовать инфекционность вирусов и бактерий + + + + + + +
Секреция через эпителий слизистых оболочек ± ± ± ± + +++ +++ +++
Проникновение через плаценту +++ +++ +++ +++

Примечание. Количественная выраженность того или иного свойства в данном случае представлена в условных знаках: «–» — отсутствие; «+» — немного; «++» — больше, чем «+"; «+++» — больше, чем «++».

Низкие концентрации, например, IgA в крови не означают, что организм продуцирует IgA меньше, чем IgG. Скорее наоборот: суточная продукция IgA возможно максимальна среди прочих изотипов и составляет около 3 г, но его физиологическое место не в крови, он секретируется из внутренней среды во внешнюю — в слизистые экзосекреты и таким образом является фактором специфической иммунной защиты внутренней среды, вынесенным во внешнюю за пределы покровных тканей. Кстати, в работах последних лет появились данные, свидетельствующие о том, что и иммуноглобулины другого изотипа — IgE — более чем на 90% секретируются в слизистый экзосекрет ЖКТ.

4.6. Дифференцировка B–лимфоцитов

Дифференцировка B–лимфоцитов из общей лимфоидной клетки–предшественницы — потомка стволовой кроветворной клетки состоит из следующих этапов и процессов.

· Развитие молекулярно–генетического аппарата, обеспечивающего биосинтез иммуноглобулинов — это перестройка генов иммуноглобулинов (обеспечивающая разнообразие антигенсвязывающих областей иммуноглобулинов) и настройка этих генов на продуктивную интеграцию в клеточный метаболизм;

· Экспрессия генов молекул, обеспечивающих проведение сигнала с иммуноглобулинового Рц для Аг внутрь клетки;

· Экспрессия генов мембранных молекул, необходимых для участия B–лимфоцита во взаимодействиях с другими клетками, в первую очередь с T–лимфоцитами и фолликулярными дендритными клетками. Это молекулы CD40, MHC–II, CD45, Рц для цитокинов–факторов роста (ИЛ–7 во время лимфопоэза, ИЛ–2 во время иммуногенеза);

· Для эффективного функционирования B–лимфоцитов существенна экспрессия на мембране корецепторов CD19, CD20 и CD21. Не случайно именно эти мембранные молекулы используют как маркёры для определения содержания B–лимфоцитов лабораторными методами идентификации клеток.

Прежде чем описать последовательность событий дифференцировки B–лимфоцитов, скажем о существовании двух известных на настоящее время субпопуляций B–лимфоцитов — B1 и B2. B2–лимфоциты — это те лимфоциты, про которые знали раньше. B1–лимфоциты стали известны относительно недавно и «проявили» они себя при детальных анализах определённых клинических случаев лейкозов. B1–лимфоциты несут мембранный маркёр, которого нет на B1–лимфоцитах, — это молекула CD5. Та же молекула экспрессируется и на некоторой части T–лимфоцитов.

B1–лимфоциты поддерживают свою физиологическую регенерацию в течение всей жизни из отдельной клетки–предшественницы, пул которой у взрослых не пополняется за счёт общей стволовой кроветворной клетки костного мозга. Эта отдельная клетка–предшественница отселяется из кроветворной ткани на свою анатомическую территорию — в брюшную и плевральную полости — ещё в эмбриональном периоде. Итак, место обитания B1–лимфоцитов — прибарьерные полости. B1–лимфоциты значительно отличаются от B2–лимфоцитов по антигенраспознавательным способностям продуцируемых АТ. АТ, синтезированные B1–лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых Аг, и эти Аг — наиболее распространённые соединения клеточных стенок бактерий. Все B1–лимфоциты — как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. АТ, продуцируемые B1–лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B1–лимфоцитах не «предусмотрено». Таким образом, B1–лимфоциты — «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов — продукт синтеза как раз B1–лимфоцитами, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.

B2–лимфоциты — это лимфоциты, характеризующиеся широким разнообразием антигенраспознающих участков молекул продуцируемых ими иммуноглобулинов. Они проходят свой лимфопоэз в раннем эмбриогенезе на территории печени, затем исключительно на территории костного мозга, а свой иммуногенез — строго в фолликулах периферических лимфоидных органов.

В лимфопоэзе B2–лимфоцитов выделяют 6 этапов: [общая лимфоидная клетка–предшественница] ® ранняя про–B–клетка ® поздняя про–B–клетка ® большая пре–B–клетка ® малая пре–B–клетка ® незрелая B–клетка ® зрелая неиммунная B–клетка (выходит из костного мозга в периферическую лимфоидную ткань).

Клетки стромы костного мозга обеспечивают оседлость развивающихся B–лимфоцитов за счёт взаимодействия определённых молекул межклеточной адгезии и факторы роста для необходимого числа циклов пролиферации. Как и во всех случаях клеточной дифференцировки, самые ранние механизмы коммитации к данному пути, а не к другому, неизвестны. Но рад маркёров движения по пути B–лимфопоэза известны.

На ранней лимфоидной клетке–предшественнице экспрессируются несколько молекул адгезии, обеспечивающих оседлость в течение необходимого периода времени в костном мозге, среди них VLA–4 (Very Late Antigen–4 — очень поздний Аг 4), лигандом которого на клетках стромы является VCAM–1 (Vascular Cell Adhesion Molecule–1 — молекула адгезии 1 к стенке сосуда). На ранней про–B–клетке, кроме молекул адгезии, экспрессируется Рц c–kit (CD117) для первого фактора роста — мембранной молекулы клеток стромы SCF — стволовоклеточного фактора. Это взаимодействие обеспечивает надлежащее число митозов ещё не поделённых на клоны по Рц для Аг предшественников B–лимфоцитов.

На следующей стадии — поздней про–B–клетке — экспрессируется Рц для ИЛ–7, воспринимающий секретируемый теми же клетками стромы цитокин ИЛ–7. Выявлен и ещё один цитокин, продуцируемый клетками стромы костного мозга, нокаут гена которого полностью отменяет развитие B–лимфоцитов — это SDF–1. Данные взаимодействия поддерживают пролиферацию про–B– и больших пре–B–клеток, в которых уже произошла перестройка генов тяжёлой цепи, но ещё не было перестройки генов лёгкой цепи. Таким образом накапливаются «полуклоны» B–лимфоцитов с уже известной специфичностью по тяжёлой цепи, но ещё неизвестной — по лёгкой. Это тоже механизм приумножения разнообразия Аг–связывающего репертуара цельных молекул иммуноглобулинов: с одной и той же тяжёлой цепью будут сочетаться в пары разные варианты будущих лёгких цепей.

Главные события дифференцировки B–лимфоцитов — перестройка генов иммуноглобулинов — начинаются на стадии ранней про–B–клетки с перестройки D–J в генах тяжёлых цепей, причём на обеих гомологичных хромосомах. В поздней про–B–клетке происходит рекомбинация ДНК V–DJ сначала на одной из гомологичных хромосом. Если она окажется непродуктивной, то та же попытка делается на второй гомологичной хромосоме. В случае продуктивной перестройки на первой хромосоме вторая использована не будет.

На следующей стадии в пре–B–клетке происходит перестройка V–J–лёгких цепей, причём сначала одной из цепей — k или l, на одной из гомологичных хромосом. Если не получится продуктивная перестройка с первой попытки в случае лёгких цепей, предпринимаются следующие.

Клетки, в которых не получилось ни одной продуктивной перестройки в генах тяжёлых и лёгких цепей, погибают по механизму апоптоза — явления, весьма распространённого для лимфоцитов.

4.7. Рецептор B–лимфоцитов для антигена (BCR)

Экспрессия на поверхности клетки продуктов перестроенных генов иммуноглобулинов, кроме того, что является главным «опорным» параметром конечной цели всей дифференцировки B–лимфоцитов, в динамике служат ещё и решающими ориентирами процесса развития этих клеток.

Собственно связывание Аг — функция вариабельных доменов димера из тяжёлой и лёгкой цепей иммуноглобулина во всех физических состояниях молекулы этого белка, но чтобы быть Рц для Аг на клетке « чистой» молекулы иммуноглобулина мало. Кроме того, что мембранная форма иммуноглобулина имеет дополнительный гидрофобный трансмембранный участок полипептида в тяжёлых цепях, в формировании BCR участвуют ещё два обязательных полипептида, называемые (неудачно) Iga (CD79a) и Igb (CD79b). Шесть полипептидных цепей BCR показаны на рис. 4.6. Дело в том, что собственный цитоплазматический участок трансмембранной формы тяжёлых цепей состоит из остатков 3 АК. Этого мало, чтобы иметь эффективные связи с внутриклеточной метаболической «машиной». Рц же по определению не только воспринимает сигнал (физически связывает лиганд), но и проводит его внутрь клетки. Так вот компоненты BCR Iga и Igb своими цитоплазматическими участками молекулы связаны с внутриклеточными тирозинкиназами, что и обеспечивает проведение сигнала от связывания Аг внутрь клетки, чтобы та могла изменить свой метаболизм в соответствии с внешними запросами. В цитоплазматических участках Iga и Igb присутствуют характерные последовательности остатков АК, называемые иммунорецепторными тирозинсодержащими активирующими последовательностями (ITAM — Immunoreceptor Tyrosine–based Activation Motifs); ITAM впервые открыты именно в Iga и Igb. Такие же последовательности присутствуют в проводящих сигнал компонентах Рц T–клеток для Аг. Таким образом, известно, что первой биохимической реакцией активации внутриклеточных процессов после связывания Рц Аг является фосфорилирование остатков тирозина в ITAM.

Рис. 4.6. Строение рецептора B–лимфоцита для антигена.

Iga и Igb имеют по одному внеклеточному домену, которым они прочно нековалентно связаны с тяжёлыми цепями иммуноглобулинового компонента BCR. Экспрессия Iga и Igb начинается на стадии про–B–клетки и поддерживается в течение всего онтогенеза B–лимфоцита до самой терминальной стадии — плазмоцита, на котором экспрессия BCR прогрессивно уменьшается до полного исчезновения.

Для того чтобы произошла эффективная активация B–клетки через BCR, необходима перекрестная сшивка Аг нескольких BCR. Для этого молекула Аг должна иметь повторяющиеся эпитопы на своей поверхности. Дальнейшие события активации B–лимфоцита показаны на рис. 4.7.

Выявлены 4 тирозинкиназы, ассоциированные с BCR: Fyn, Btk, Lyn и Syk. Сначала первые 3 обеспечивают фосфорилирование двух остатков тирозина в ITAM Iga и Igb. К фосфорилированным тирозинам присоединяется и тем активируется к действию Syk, продолжающая активационный каскад. Тирозинкиназы активируются в результате фосфорилирования в одном месте и ингибируются в результате тоже фосфорилирования, но в другом месте молекулы: так устроено, чтобы процесс активации клетки не принимал характера «вразнос».

Для активации необходимо дефосфорилирование ингибирующих участков молекул тирозинкиназ. Такое дефосфорилирование катализирует мембранная тирозинспецифичная фосфатаза CD45. Эта молекула имеет несколько изоформ, экспрессирована на всех белых клетках крови, поэтому её название — общий Аг лейкоцитов .

Внутри клетки действует ещё одна фосфатаза — SHP, которая дефосфорилирует активационные тирозины, чем ограничивает процесс активации лимфоцита. Мыши, у которых этот фермент отсутствует по причине мутации, реагируют на существенно меньшие дозы Аг, чем нормальные мыши, у них необыкновенно повышен уровень пролиферации лимфоцитов, и эти мыши умирают через несколько недель после рождения с клинически признаками разлитой аутоиммунной патологии.

Тирозинкиназа Syk активирует фосфолипазу C–g (PLC–g) и Ras. Ras в свою очередь активирует киназу Raf, которая фосфорилирует внутриклеточные белки по остаткам серина или треонина, что вносит свой вклад в активацию ДНК–связывающих белков и тем самым способно инициировать транскрипцию.

Рис. 4.7. Активация B–лимфоцита: внутриклеточная передача «сигнала».

Фосфолипаза C–g катализирует превращение фосфатидилинозитола бифосфата на диацилглицерол (ДАГ) и фосфатидилинозитол трифосфат (PIP3). ДАГ активирует протеинкиназу С — серин/треонинкиназу, которая начинает фосфорилировать белки по остаткам серина или треонина, что, как и при работе Raf, заканчивается активацией транскрипции. PIP3 стимулирует повышение в клетке концентрации ионов Ca2+. В результате активируются кальций–зависимые ферменты, что также действует в направлении активации транскрипции.

Ответы клеток–мишеней происходят при сочетании двух феноменов — пролиферации и биосинтеза специфических белков.

О том, что проведение сигнала внутрь клетки — не только конечная цель, но и необходимо для самого процесса дифференцировки, свидетельствует тот факт, что генетический дефект в тирозинкиназе Btk имеет следствием иммунодефицитную патологию с полным отсутствием у человека B–лимфоцитов — Х–сцепленную агаммаглобулинемию Брутона.

4.8. Стадии лимфопоэза B–лимфоцитов

Введение в зародышевые клетки искусственного перестроенного трансгена тяжёлой цепи полностью подавляет перестройку одноимённых собственных генов клетки. Но если трансген не содержит кода для трансмембранного участка тяжёлой цепи, то трансген не мешает перестройке собственного одноимённого гена. Следовательно, для того чтобы в конечном счёте дифференцированный B–лимфоцит имел строго один вариант тяжёлой цепи и один вариант лёгкой, ещё в процессе дифференцировки необходима экспрессия тяжёлой цепи на мембране. Так оно и есть. Как только в клетке произошла трансляция полипептида тяжёлой цепи, он экспрессируется на мембране в составе так называемого пре–B–Рц. Чтобы это могло случиться, в про–B–клетке синтезируются два специальных полипептида, которые нековалентно соединяются друг с другом, образуя суррогатную лёгкую цепь. Один из этих полипептидов — d5, второй — VpreB. Таким образом, пре–B–клеточный Рц состоит из d5 + VpreB + m–цепь + Iga + Igb. Его экспрессия транзиторна, но абсолютно необходима для правильной дифференцировки B–лимфоцитов. После экспрессии пре–B–Рц временно инактивируются белки RAG, и клетки вступают в процесс интенсивной пролиферации, которая прекращается с исчезновением этого Рц. После завершения этой волны пролиферации вновь экспрессируются гены RAG1 и RAG2 и начинается перестройка генов лёгкой цепи. Как только это произойдет, на развивающемся B–лимфоците будет экспрессироваться дефинитивный BCR состава: L–цепь + m–цепь + Iga + Igb. Эту стадию развития называют незрелым B–лимфоцитом.

Маркёром завершения B–лимфопоэза — образования зрелого неиммунного B–лимфоцита, готового к выходу из костного мозга в периферическую лимфоидную ткань, — является одновременная экспрессия (коэкспрессия) на мембране 2 типов BCR — с IgM и IgD (задействуется альтернативный сплайсинг РНК–транскрипта с md–гена тяжёлой цепи), причём IgD больше, чем IgM.

Прежде чем произойдет экспрессия на мембране IgD, но после того как произошла экспрессия BCR с полноценным IgM, в развитии B–лимфоцитов «предусмотрен» существенный и обязательный этап дифференцировки — селекция (апоптоз) аутореактивных клонов в местах прохождения лимфопоэза, т.е. на территории костного мозга. В природе устроено так, что связывание Аг незрелой B–клеткой, на которой есть антигенраспознающий Рц с IgM, но ещё нет Рц с IgD, является сигналом для апоптоза, т.е. запрограммированной гибели клетки. Таким образом, из случайного репертуара по Аг–связывающим Рц на исходе лимфопоэза убираются B–лимфоциты, несущие Рц, способные с высокой аффинностью связывать белки собственных клеток и растворимые белки, присутствующие в достаточных количествах на территории костного мозга. Такой механизм толерантности к своему называют делецией клона.

Толерантностью в иммунологии называют отсутствие иммунного ответа конкретной особи на тот или иной (те или иные) Аг, на который(ые) другие особи либо та же особь, но при иных конкретных условиях онтогенеза, потенциально способны развивать иммунный ответ. Делеция клона не единственный механизм установления толерантности к конкретному Аг со стороны B–лимфоцитов. Известно ещё два механизма: развитие состояния ареактивности (или анергии ) и «редакция» Рц по антигенной специфичности. Эти два механизма действуют в периферических лимфоидных тканях.

Реальность механизма делеции клона, специфичного к мультивалентному Аг, который экспрессирован на мембранах собственных клеток, показана в экспериментах с трансгенными мышами. Например, в таком эксперименте, в котором трансгены — гены лёгкой и тяжёлой цепи молекулы иммуноглобулина, специфичного к молекулам Н–2Кb MHC–I. У таких мышей благодаря описанным выше закономерностям все B–лимфоциты имеют один и тот же BCR с иммуноглобулином, кодируемым трансгеном. Если мыши–реципиенты такого трансгена в собственном организме не имеют Аг–мишени (т.е. Н–2Кb), у них нормальное количество B–лимфоцитов в периферических лимфоидных тканях, только все они с одним и тем же Рц. Но если мыши-реципиенты сами имеют ген/Аг Н–2Кb, то у них находят нормальное количество пре–B–клеток, которые, однако, все погибают на территории костного мозга апоптозом и в периферических лимфоидных тканях B–лимфоцитов совсем нет. По тому же механизму клональной делеции погибают и B–лимфоциты на периферии, если они несут Рц, способный связывать молекулы мембран клеток, которые представлены в большом количестве в тех или иных тканях (например, в печени).

Если незрелый B–лимфоцит (с IgM, но без IgD) связывает растворимый Аг (например, в организме дважды трансгенных мышей: один трансген кодирует синтез растворимого белка, второй — АТ к нему), то лимфоцит не элиминируется апоптозом, а остаётся в организме, но приобретает состояние анергии: в результате связывания Аг с Рц не наступает активации лимфоцита к иммунному ответу, наоборот, развивается блок проведения сигнала.

У зрелых B–лимфоцитов в периферических лимфоидных тканях на большие дозы растворимых Аг и особенно при отсутствии адекватного взаимодействия с T–хелперами так же развивается состояние анергии. Такие клетки долго не живут и в течение нескольких дней все равно погибают.

Для полноценной реакции на Аг лимфоциту мало только Рц для Аг. У лимфоцитов есть ещё такой обязательный фактор, как корецепторный комплекс мембранных молекул, связанных с внутриклеточными системами проведения сигналов. Не на каждом Аг есть повторяющиеся эпитопы, следовательно, не каждый Аг способен вызвать перекрестную сшивку (или агрегацию) BCR. Вот в этих случаях и нужны дополнительные сигналы. В корецепторный комплекс B–лимфоцитов входят по крайней мере такие мембранные молекулы, как CD19/CR2 (CD21)/TAPA–1.

Молекула CD19 экспрессирована на всех B–клетках, начиная с ранних стадий лимфопоэза. Генетический нокаут мышей пo CD19 приводит к выраженному дефициту B–клеточного иммунного ответа на любой Аг. Точные механизмы участия CD19 в активации B–лимфоцита Аг неизвестны. В мембране CD19 физически ассоциирована с Рц 2–го типа для компонентов комплемента — CR2 (CD21). Связывание CR2 с компонентами комплемента имеет следствием фосфорилирование молекулы CD19 ассоциированными с BCR киназами. Фосфорилированная молекула CD19 связывает фосфатидилинозитол–3–киназу и молекулу vav (многофункциональная молекула проведения внутриклеточных сигналов), которые усиливают активационные реакции, инициированные с BCR. Физически в мембране к CD19 и CR2 примыкает TAPA–1 (CD81), но роль этой молекулы неизвестна.

В результате только совместной работы BCR и корецепторного комплекса возможен запуск в клетке таких процессов, как пролиферация, экспрессия на мембране молекул, необходимых для взаимодействия с T–лимфоцитами, экспрессия на B–лимфоцитах молекул MHC–II, необходимых для представления B–лимфоцитом Аг T–лимфоциту для распознавания.

Приведём краткие суммированные сведения о динамике приобретения признаков дифференцировки во время развития B–лимфоцитов (лимфопоэза) (табл. 4.3).

Таблица 4.3. Стадии (признаки) дифференцировки B–лимфоцитов в лимфопоэзе

Стадия развития B–лимфоцита Состояние генов тяжёлой цепи Состояние генов лёгкой цепи Экспрессия белков Мембранные маркёры
Общая лимфоидная клетка–предшественница Зародышевая конфигурация Зародышевая конфигурация RAG1/RAG2 CD34; CD45
Ранняя про–B–клетка Перестройка DJ То же RAG1/RAG2; TdT; VpreB; l5 CD34; CD45; CD10; CD19; CD38; MHC–II
Поздняя про–B–клетка Перестройка V–DJ То же TdT; VpreB; l5; Рц для ИЛ–7 CD45R; CD10; CD19; CD38; CD20; CD40; MHC–II
Большая пре–B–клетка Перестройка V–DJ Перестроенный VDJ RAG1/RAG2; VpreB; l5; Рц для ИЛ–7 CD45R; MHC–II; Pre–BCR; CD19; CD20; CD38; CD40
Малая пре–B–клетка То же Перестройка V–J Тяжёлая m–цепь; лёгкая k- или l–φεοь CD45R; MHC–II; CD19; CD20; CD38; CD40
Незрелая B–клетка Перестроенный VDJ в m–цепи в трансмембранной форме Перестроенный VJ   CD45R; MHC–II; CD19; CD20; CD40; BCR–IgM
Зрелая неиммунная B–клетка Экспрессия IgM и IgD Экспрессия лёгкой цепи   CD45R; MHC–II; CD19; CD20; CD21; CD40; BCR–IgM/BCR–IgD

После распознавания Аг и вступления в иммунный ответ в периферических лимфоидных органах и тканях B–лимфоцит пройдет ещё две стадии додифференцировки, которые называют иммуногенезом. На второй из этих стадий произойдет дихотомия: B–лимфоцит станет либо B–лимфоцитом памяти (уйдет в дифференцированный резерв на случай, если тот же Аг попадёт во внутреннюю среду организма повторно), либо плазматической клеткой — терминальным продуцентом больших количеств секретируемого иммуноглобулина заданной специфичности. Собственно иммуногенез будет описан ниже, здесь, забегая вперед, приведём признаки дифференцировки B–лимфоцитов на разных стадиях иммуногенеза в B–лимфоциты памяти и плазматические клетки (табл. 4.4).

Таблица 4.4. Признаки дифференцировки B–лимфоцитов в процессе развития иммунного ответа (иммуногенеза)

Стадия развития B–лимфоцита в иммуногенезе Состояние генов/РНК/белка тяжёлой цепи Состояние генов/РНК/ белка лёгкой цепи Экспрессия особых белков Маркёры клеточной мембраны
Лимфобласт Альтернативный сплайсинг РНК, биосинтез секретируемой формы m–цепи Продуктивный синтез лёгкой цепи Специфическое АТ CD45R; MHC–II; CD19; CD20; CD21; CD40
B–лимфоцит памяти Произошло переключение класса тяжёлой цепи с m на g, e или a. В V–генах произошли гипермутирование и отбор наиболее аффинных АТ В V–генах произошли гипермутирование и отбор наиболее аффинных АТ CD45?; MHC–II; BCR–IgG или IgA, или IgE; CD19; CD20; CD21; CD40
Плазмоцит Массовая продукция тяжёлых цепей заданного типа Массовая продукция лёгких цепей заданного типа Массовая продукция цельных иммуноглобулинов в секреторной форме Аг плазмоцитов–1 (CD38)

Третий механизм избегания аутореактивности B–лимфоцитов, «редакция» Рц, используется, по-видимому, в небольшом проценте незрелых B–клеток, в которых ещё активны гены перестройки RAG1 и RAG2. В этих клетках связывание IgM в составе BCR на поверхности незрелого B–лимфоцита с Аг является сигналом для запуска нового процесса рекомбинации VDJ/VJ на второй из двух гомологичных хромосом: если «повезет», то для второго варианта VDJ/VJ на территории костного мозга не найдется Аг и B–лимфоцит выживет и будет иметь шанс быть использованным на периферии.

В костном мозге молодых здоровых мышей ежедневно вступают в митоз 30–40´106 клеток. Из них только 10–15´106 клеток (меньше половины) выходит на периферию. Столько же периферических B–лимфоцитов ежедневно отмирает. Это ежедневное обновление пула составляет 5–10% общего числа периферических B–лимфоцитов. Если «новый» B–лимфоцит по каким-то причинам не попал в лимфоидный фолликул периферических лимфоидных тканей, то его время полужизни не превысит 3 дней. В лимфоидных фолликулах неиммунные B–лимфоциты имеют время полужизни от 3 до 8 нед: все это время они готовы встретить «свой» Аг и вступить в процесс иммуногенеза, т.е. развития иммунного ответа, и стать либо плазмоцитом, либо B–лимфоцитом памяти.

Специализированное анатомическое место пребывания B–лимфоцитов в периферической лимфоидной ткани — фолликулы. В фолликулах B–лимфоциты удерживаются связями со специальными клетками стромы — дендритными клетками фолликулов. ФДК — это не те же самые дендритные клетки, которые присутствуют в покровных тканях [под названием клеток Лангерганса (белых отростчатых эпидермоцитов)], в тимусе (интердигитирующие) и циркулируют в крови. Это другие по гистогенетическому происхождению клетки, скорее всего, ФДК не имеют костномозговое происхождение.

На ФДК экспрессированы Рц для иммуноглобулинов — Fc–Рц (FcR), отличающиеся двумя особенными свойствами. Первое, самое необычное, заключается в том, что, связав однажды комплекс Аг–АТ через FcR, ФДК способны нести его на себе продолжительное время (дни, месяцы, возможно, годы). Второе свойство FcR ФДК — комплекс Аг–АТ не поглощается внутрь клетки.

Именно в фолликулах в связи с ФДК B–лимфоцит, распознавший свой Аг и вступивший ещё при прохождении через T–зависимую парафолликулярную зону лимфатического узла (или другого периферического лимфоидного органа) в адекватное взаимодействие с также распознавшим Аг T–лимфоцитом, интенсивно пролиферирует. На этой стадии развития B–лимфоциты называют центробластами .

В центробластах происходит уникальное даже среди лимфоцитов явление — возрастание аффинности АТ в отношении своего Аг. В дифференцировке T–лимфоцитов аналогичного процесса нет.

Феномен возрастания аффинности АТ по мере прогрессивного развития иммунного ответа — пример классического дарвиновского процесса на клеточном уровне. Уникальной особенностью молекулярной генетики B–лимфоцитов является запрограммированность на повышенную частоту соматических мутаций в уже перестроенных V–генах иммуноглобулинов: в центробластах происходит замена одной пары нуклеотидов (п.н.) на каждые 103 п.н. на 1 митоз. Во всяком другом участке ДНК такое событие случается с вероятностью 10–12, т.е. на 9 порядков реже. Получается, что каждый второй центробласт несет мутацию в V–области молекулы иммуноглобулина. Чем выше оказывается сила связи иммуноглобулина в составе BCR (больше аффинность) с Аг, присутствующим в фолликуле на поверхности ФДК, тем больше вероятность выживания данного B–лимфоцита, ибо на этом этапе дифференцировки связь с Аг является антиапоптозным сигналом на выживание — происходит индукция экспрессии антиапоптозного гена bcl–2. Если в результате генетической или эпигенетической аномалии имеет место повышенная экспрессия антиапоптозных генов, то развивается процесс, который называют лимфопролиферативным, т.е. возникают опухоли из центробластов.

В терминальной стадии дифференцировки B–лимфоцита, в плазмоците, сильно развит эндоплазматический ретикулум. Более 20% всего белкового синтеза плазмоцита составляют секретируемые иммуноглобулины. На мембране плазмоцита иммуноглобулинов уже нет. На плазмоцитах нет и MHC–II; в них невозможно уже переключение классов иммуноглобулинов, невозможно соматическое гипермутирование иммуноглобулиновых генов. Продукция АТ плазматической клеткой уже не зависит от контакта с Аг, не зависит и от взаимодействий с T–лимфоцитами. Первые плазматические клетки локализуются на территории лимфатического узла, в котором инициирован иммунный ответ, а именно в мозговых тяжах; эти клетки вырабатывают АТ для «внутреннего пользования»: данные АТ связывают Аг в комплекс и фиксируются на FcR фолликулярных дендритных клеток. По мере прогрессивного иммунного ответа прошедшие аффинное созревание B–лимфоциты превращаются в плазмоциты, которые мигрируют из лимфатического узла в костный мозг или в собственную пластинку слизистой оболочки, где живут и работают в течение почти 4 нед. Этим сроком и ограничена продолжительность продуктивного гуморального иммунного ответа.

Для всех описанных стадий развития B–лимфоцитов описаны и соответствующие опухоли, сохраняющие и локализацию, и фенотипические признаки исходной нормальной клетки. Опухоли из лимфоцитов всегда клональны, судя по перестроенным генам иммуноглобулинов, т.е. происходят из одной клетки. Именно на опухолях из B–лимфоцитов была изучена молекулярная генетика иммуноглобулинов. Плазмоцитомы (син. миеломы) локализуются в костном мозге. Хотя они являются опухолями из зрелых клеток, но растут, как правило, агрессивно, так как микроокружение изобилует факторами роста.

В типичных случаях нозологический диагноз лейкоза соответствует той или иной нормальной субпопуляции или стадии развития B–лимфоцитов (табл. 4.5).

В опухолевых лимфоидных клетках часто обнаруживают транслокации, при которых локусы генов иммуноглобулинов оказываются физически приближёнными к генам регуляции пролиферации.

Таблица 4.5. B–клеточные лейкозы

Нозология Нормальный клеточный эквивалент Локализация опухоли
Хронические лимфолейкозы CD5+ B1–лимфоциты Кровь
Острый лимфобластный лейкоз Ранние лимфоидные клетки–предшественницы Костный мозг и кровь
Пре–B–лейкоз Пре–B–клетки То же
Фолликулярная лимфома Бёркетта Зрелые B–лимфоциты Периферические лимфоидные органы (фолликулы)
Макроглобулинемия Вальденстрема IgM–секретирующие B–лимфоциты Периферические ткани
Множественная миелома (плазмоцитома) Плазматические клетки (могут быть иммуноглобулины разных классов) Костный мозг

Нормальные клеточные гены, контролирующие пролиферацию, называют протоонкогенами. Онкогенами в своё время были названы открытые гены РНК–содержащих вирусов, ответственные за опухолевое перерождение инфицированных вирусом клеток.

Позже выяснили, что эти гены вирусы «списывают» с клеточных генов, которые и назвали протоонкогенами. Протоонкогеном является антиапоптозный ген bcl–2.

Date: 2015-07-02; view: 1324; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию