Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Равновесия и обменные реакции в растворах электролитов

Теория слабых электролитов. Константа диссоциации. В растворах слабых электролитов процесс диссоциации протекает обратимо, т.е. идет до установления состояния равновесия, следовательно, к нему может быть применен закон действующих масс для обратимых процессов.

Обратимый процесс диссоциации слабого электролита характеризуется константой равновесия.

Так, для процесса диссоциации слабого электролита

КmАn D mКn+ + nАm–

можно записать константу равновесия:

КД
,

где [Кn+], [Аm], [КmАn] – равновесные концентрации компонентов; m и n – стехиометрические коэффициенты компонентов в уравнении диссоциации; Кд – константа равновесия для процесса диссоциации слабого электролита, называемая константой диссоциации..

Например, для процесса диссоциации уксусной кислоты

СН3СООН D СН3СОО- + Н+

.

Кд представляет собой важную характеристику слабых электролитов, т.к. указывает на прочность их молекул в данном растворе. Чем меньше Кд в данном растворителе, тем слабее диссоциирует электролит и тем, следовательно, устойчивее его молекулы. Кд – табличная величина.

Как и любая константа равновесия, константа диссоциации зависит от природы растворенного вещества и растворителя, от температуры и не зависит от концентрации раствора.

С повышением температуры константа диссоциации обычно уменьшается. Например, константа диссоциации уксусной кислоты при 293, 298 и 373 К соответственно равна 1,85·10-5, 1,75·10-5, 1,35·10-5 (т.е. процесс диссоциации является экзотермическим).

Следует отметить, что строго законы химического равновесия применимы только к слабым электролитам, поэтому описание электролитической диссоциации законом действующих масс является одним из основных признаков слабых электролитов.

Между Кд и α существует количественная зависимость. Примем для процесса диссоциации бинарного электролита

КА D К+ + А

молярную концентрацию растворенного вещества КА равной С, а степень диссоциации α, тогда равновесные концентрации ионов в растворе будут равны [А-] = [К+] = αС, а равновесная концентрация недиссоциированных молекул [КА] = С – αС, то



,

где (1-α) – доля недиссоциированных молекул вещества. Полученное соотношение называется законом разбавления Оствальда. В случае слабых электролитов если α<<1, то

и ;

здесь – разбавление раствора.

Значения К­д для разных электролитов приведены в справочной литературе.

Для расчетов, связанных с диссоциацией кислот, часто удобно пользоваться не константой Кд, а так называемым показателем константы диссоциации рК, который определяется соотношением

рК = – lg Кд.

Очевидно, что с возрастанием Кд, т.е. с увеличением силы кислоты, значение рК уменьшается; следовательно, чем больше рК, тем слабее кислота.

Степень диссоциации электролита α связана с изотоническим коэффициентом i соотношением:

или ;

здесь k – число ионов, на которые распадается при диссоциации молекула электролита (для КСl = 2, для ВаСl2 и Nа24 k=3 и т.д.­­­­).

Таким образом, найдя по опытным величинам ∆р, ∆tзам и т.п. значение i, можно вычислить степень диссоциации электролита в данном растворе. При этом следует иметь в виду, что в случае сильных электролитов найденное таким способом значение α выражает лишь «кажущуюся» степень диссоциации, поскольку в растворах сильные электролиты диссоциированы полностью. Наблюдаемое отличие кажущейся степени диссоциации от единицы связано с межионными взаимодействиями в растворах сильных электролитов.

Теория сильных электролитов. В водных растворах сильные электролиты полностью диссоциируют, поэтому число ионов в них больше, чем в растворах слабых электролитов той же концентрации. И если в растворах слабых электролитов концентрация ионов мала, расстояние между ними велико и взаимодействие между ионами незначительно, то в не очень разбавленных растворах сильных электролитов среднее расстояние между ионами вследствие значительной концентрации сравнительно мало. Между ними возникает электростатическое взаимодействие, которое приводит к тому, что катионы и анионы испытывают взаимное притяжение, а ионы одного знака заряда отталкиваются друг от друга. Благодаря притяжению каждый ион как бы окружен шарообразным роем противоположно заряженных ионов, получившим название «ионной атмосферы», в то время как ионы одноименного знака располагаются дальше (рис. 8.7). При этом ионы сольватируются (гидратируются), что также отражается на их свойствах и свойствах растворителя.

Впервые понятие «ионная атмосфера» предложено Дебаем и Хюккелем. Ионные атмосферы обладают следующими характерными особенностями:

- в их состав входят катионы и анионы, однако преобладают ионы, противоположные по знаку заряду центрального иона;

- cуммарный заряд ионной атмосферы равен по величине заряду центрального иона и противоположен ему по знаку;

- все ионы в растворе равноправны, поэтому каждый из них является центральным ионом и одновременно входит в состав ионной атмосферы другого иона;



- за счет теплового движения ионы, входящие в состав ионной атмосферы, постоянно меняются местами с ионами, находящимися за ее пределами, т.е. ионная атмосфера носит динамический характер.

Межионные силы влияют на все свойства растворов (электрическая проводимость, tкип и tзам, давление насыщенного пара, осмотическое давление). Так, в отсутствие внешнего электрического поля ионная атмосфера симметрична и силы, действующие на центральный ион, взаимно уравновешиваются. Если же приложить к раствору постоянное электрическое поле, то разноименно заряженные ионы будут перемещаться в противоположных направлениях. При этом каждый ион стремится двигаться в одну сторону, а окружающая его ионная атмосфера – в противоположную, вследствие чего направленное перемещение иона замедляется, а следовательно, уменьшается число ионов, проходящих через раствор в единицу времени, т.е. уменьшается сила тока. Чем больше концентрация раствора, тем сильнее проявляется тормозящее действие ионной атмосферы на электрическую проводимость раствора. Следовательно, в результате межионных взаимодействий все свойства раствора электролита, зависящие от концентрации ионов, проявляются так, как если бы число ионов в растворе было меньше, чем это соответствует полной диссоциации электролита.

Для оценки состояния ионов в растворе пользуются величиной, называемой активностью. Под активностью иона понимают ту эффективную, условную концентрацию его, соответственно которой он действует при химических реакциях. Активность иона a равна его истинной концентрации С, умноженной на коэффициент активности иона f:

.

Коэффициент активности иона f - безразмерная величина, характеризующая степень отклонения свойств данного раствора от свойств идеального раствора:

.

Коэффициенты активности зависят от природы растворителя и растворенного вещества, от заряда и природы иона, от концентрации раствора, от температуры.

В разбавленных растворах (С ≤ 0,5 моль/л) природа иона слабо сказывается на значении его коэффициента активности f. Приближенно можно считать, что в разбавленных растворах коэффициент активности иона f в данном растворителе практически не зависит от природы иона, зависит только от заряда иона и ионной силы раствора I, которая равна полусумме произведений концентрации С каждого иона на квадрат его заряда z:

.

В химических справочниках значения f ионов в разбавленных растворах приводятся в зависимости от их зарядов z и ионной силы раствора I. Приближенно коэффициент активности иона в разбавленном растворе можно вычислить по формуле

.

Активность и коэффициент активности можно определить на основании экспериментальных данных (по повышению t­­­кип, понижению tзам, по давлению насыщенного пара над растворами и т.д.).

Подстановка величины активности (а) вместо концентрации (С) в уравнение закона действующих масс делает его справедливым при любых концентрациях.

Так, для обратимого процесса

КА D К+ + А,

отражающего диссоциацию слабого электролита в растворе, константа равновесия будет равна

(термодинамическая константа диссоциации).

Для предельно разбавленных растворов (близких к идеальным), где отсутствуют силы взаимодействия ионов между собой из-за их отдаленности друг от друга, f= 1, т.е. a = С. При обсуждении последующего материала примем, что концентрации разбавленных растворов электролитов существенно не отличаются от их активностей.

Электролитическая диссоциация кислот, оснований и солей в воде.Молекулы кислот в воде диссоциируют на ионы водорода (гидроксония-гидратированный ион водорода) и на анионы кислотного остатка. Например, уравнение диссоциации азотной кислоты имеет вид

HNO3+H2O = H3O+ + NO3ˉ

или при упрощенной записи

НNО3 = Н+ + NО3ˉ.

Максимальное число ионов водорода, образующихся из одной молекулы кислоты, определяет ее основность, следовательно НNО3 - одноосновная кислота.

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых – в меньшей. Чем лучше кислота диссоциирует, т.е. чем больше ее константа диссоциации, тем она сильнее. Например, азотная кислота более сильная, чем йодноватая, т.к. Кд (HNO3) = 4,36*10 > Кд(HIO3) = 1,7*10-1.

Многоосновные кислоты диссоциируют ступенчато, последовательно отщепляя один ион водорода за другим, и каждая ступень ионизации характеризуется определенной константой диссоциации. Если кислота слабая, то на всех ступенях процесс обратимый. Так, для ортофосфорной кислоты:

1. Н3РО4 D Н+ + Н2РО4ˉ .

2. Н2РО4ˉ D Н+ + НРО42- .

3. НРО42- D Н+ + РО43- .

Из сопоставления приведенных выше значений констант диссоциации следует, что Кд1 > Кд2 > Кд3. Первый ион водорода отрывается от молекулы легче, последующие все труднее, т.к. возрастает отрицательный заряд кислотного остатка; поэтому в не очень разбавленных растворах фосфорной кислоты ионов РО43- мало. Неравенства Кд1 > Кд2 > …Кдn характерны и для других многоосновных кислот. Ориентировочно можно считать, что каждая последующая константа диссоциации меньше предыдущей в 105 раз. Они связаны между собой соотношением: КД= КД1* КД2*…*КДn.

Многоосновные сильные кислоты диссоциируют по первой ступени как сильные электролиты, а по второй – как электролиты средней силы, например:

Н24 = Н+ + НSО4ˉ КД1=1*103,

НSО4- D Н+ + SО42- КД2=2*10-2.

Способность многоосновных кислот диссоциировать ступенчато объясняет их склонность к образованию кислых солей.

Сила кислородсодержащих кислот зависит от строения молекулы. Формулу кислородсодержащих кислот в общем виде можно записать ЭОm(OH)n, имея в виду, что в их молекулах имеются связи Н-О-Э и Э=О. Как показывают исследования, сила кислот практически не зависит от n (числа ОН-групп), но заметно возрастает с увеличением m (числа несвязанных в ОН-группы атомов кислорода, т.е. со связями Э=О). По первой ступени ионизации кислоты типа Э(ОН)n относятся к очень слабым (Кд1 = 10-8 – 10-11, рКд1=7-11), типа ЭО(ОН)n – к слабым (Кд1=10-2-10-4, рКд1=1,5-4), типа ЭО2(ОН)n – к сильным и типа ЭО3(ОН)n – к очень сильным (табл.8.2).

 

Таблица 8.2

Классификация кислородсодержащих кислот по их силе в водных растворах*

Тип кислоты Кислота КД рКД Сила кислот
Э(ОН)n HBrO 2,06*10-9 8,7 Очень
  HClO 3,2*10-8 7,5 слабые
  HIO 2,3*10-11 10,64  
  H3AsO3 6*10-10 9,2  
  H3BO3 5,8*10-10 9,24  
  H4SiO4 2*10-10 9,7  
  H6TeO6 2*10-8 7,7  
ЭО(ОН)n HClO2 1,1*10-2 1,97 Слабые
  HNO2 5,7*10-4 3,29  
  H2CO3 1,32*10-4 3,88  
  H2SO3 1,3*10-2 1,87  
  H3AsO4 6,46*10-3 2,19  
  H3РO4 7,25*10-3 2,12  
  H5IO6 3,1*10-2 1,57  
ЭО2(ОН)n HBrO3 2*10-1 0,7 Сильные
  HClO3   ~ -1  
  HIO3 1,7*10-1 0,77  
  HNO3 4,36*10 ~ 1,64  
  H2MnO4 ~ 10-1 - 1  
  H2SO4 1*103 -3  
ЭО3(ОН)n HClO4   ~ -10 Очень
  HMnO4 1*103 ~ 2,3 сильные

Примечание: *В таблице приведены значения КД первой ступени ионизации кислот.

Резкое возрастание силы в ряду кислот с увеличением m можно объяснить оттягиванием электронной плотности от связи Н-О на связь Э=О.

С увеличением степени окисления центрального атома Э изменение состава образуемых им кислородсодержащих кислот отвечает увеличению m, например:

Кислота +1 HClO +3 HClO2 +5 HClO3 +7 HClO4
Тип кислоты Cl(OH) ClO(OH) ClO2(OH) ClO3(OH)
рКд 7,25 1,97 -1 -5

В этом проявляется общая закономерность: с увеличением степени окисления элемента в ряду его гидроксидов основные свойства ослабевают, кислотные – усиливаются, например:

Соединение +2 Mn(OH)2 +3 Mn(OH)3 +4 Mn(OH)4 +6 H2MnO4 +7 HMnO4
H4MnO4
Кислотно-основные свойства Основание средней силы Основание слабое А мфотерное соединение Кислота сильная Кислота очень сильная

Молекулы оснований в воде диссоциируют на катионы металлов (исключение - NН4ОН D NН4+ + ОН ˉ) и гидроксид- ионы. Например, уравнение диссоциации гидроксида натрия имеет вид

NаОН = Nа+ + ОНˉ.

Максимальное число гидроксид-ионов, образующихся из одной молекулы основания, определяет его кислотность, следовательно, NaOH – однокислотное основание.

Чем больше константа диссоциации основания, тем оно сильнее. Например, гидроксид лития более сильное основание, чем гидроксид аммония, т.к. Кд(LiOH) = 6,75*10-1 > Кд (NH4OH) = 1,8*10-5.

Многокислотные основания диссоциируют ступенчато, последовательно отщепляя один гидроксид – ион за другим, и каждая ступень ионизации характеризуется определенной константой диссоциации. Если основание слабое, то на всех ступенях процесс протекает обратимо, например:

Fе(ОН)3 D Fе(ОН)2+ + ОНˉ ,

Fе(ОН)2+ D Fе(ОН)2+ + ОНˉ ,

Fе(ОН)2+ D Fе3+ + ОНˉ .

Многокислотные сильные основания диссоциируют по первой ступени как сильные электролиты, а по второй – как электролиты средней силы, например:

Са(ОН)2 = СаОН+ + ОНˉ,

СаОН+ D Са2+ + ОНˉ.

Этим объясняется способность оснований многовалентных металлов образовывать основные соли, например Zn(ОН)Сl, Fе(ОН)Сl2 и др.

Гидроксиды многих металлов в водных растворах могут диссоциировать и по кислотному, и по основному типу. Соединения, которые в зависимости от условий проявляют как кислотные, так и основные свойства, называются амфотерными или амфолитами. Амфотерность электролитов объясняется малым различием прочности связей Э-О и О-Н. К амфотерным электролитам относятся : Zn(ОН)2, Al(ОН)3, Be(ОН)2, Ga(ОН)3, Cr(ОН)3, Ge(ОН)2, Sn(ОН)4, Pb(ОН)2 и др. Примером может служить диссоциация гидроксида цинка:

2H+ +[Zn(OH)4] D Zn(OH)2 +2H2O D [Zn(H2O)2]2+ +2OHˉ.

При этом в кислой среде равновесие сдвигается вправо, в щелочной – влево. При взаимодействии гидроксида цинка, например, с азотной кислотой образуется нитрат цинка:

Zn(OH)2 + 2HNO3 D Zn(NO3)2 + 2H2O;

при взаимодействии же с гидроксидом калия – тетрагидроксоцинкат калия:

Zn(OH)2 + 2KOH D K2[Zn(OH)4].

Соли при электролитической диссоциации образуют катионы металлов (исключение соли аммония) или комплексные катионы и одноатомные или многоатомные анионы. Соли бывают средние (нейтральные, например, СаSО4), кислые (СаНРО4), основные (Zn(ОН)Сl), комплексные (K2[Zn(OH)4]).

Средние соли диссоциируют в одну стадию. Например,

24 = 2Nа+ + SО .

В кислых солях отщепляется сначала ион металла по типу сильного электролита, затем – ионы водорода по типу слабого электролита.

Например: NаН2РО4 = Nа+ + Н2РО ,

Н2РО D Н+ + НРО ,

НРО D Н+ + РО .

В последних двух ступенях равновесие сдвинуто влево, поэтому ионов Н+ в растворе очень мало.

В основных солях сначала отщепляется кислотный остаток по типу сильного электролита, затем - гидроксид–ионы по типу слабого электролита. Например,

(ZnОН)24 = 2ZnОН+ + SО ,

ZnОН+ D Zn2+ + ОНˉ.

В последней стадии равновесие сдвинуто влево, поэтому ионов ОНˉ в растворе мало.

Обменные реакции в растворах электролитов.В растворах электролитов реагирующими частицами являются ионы (точнее сольватированные или гидратированные ионы). Реакции, осуществляющиеся в результате обмена ионами между электролитами, называются ионообменными (или реакциями ионного обмена). Отличительной чертой реакций ионного обмена (РИО) является сохранение элементами их степеней окисления (реакции протекают без изменения заряда простых и сложных ионов).

Различают обратимые и необратимые РИО. Все реакции между ионами обратимы, протекают очень быстро. Однако в некоторых случаях равновесие сильно смещено в сторону образования продуктов реакции из-за удаления их из сферы реакции (т.е. реакции практически идут до конца, необратимы). РИО протекают практически необратимо, если исходные компоненты – сильные электролиты и растворимые вещества, а в ходе реакции образуются:

- осадки (нерастворимые или малорастворимые);

- газообразные вещества;

- слабые электролиты (малодиссоциирующие вещества);

- комплексные соединения.

В уравнениях необратимых РИО принято ставить знак « = ».

Закономерности, характерные для обратимых ионнообменных реакций:

1. Реакция ионного обмена обратима (может протекать в двух направлениях), если среди исходных и образующихся веществ есть слабые электролиты, нерастворимые, малорастворимые или газообразные вещества или если и исходные, и образующиеся вещества являются растворимыми и сильными электролитами. В уравнениях таких реакций ставят знак обратимости «D».

2. Равновесие такой реакции смещается в направлении наиболее полного связывания ионов (их наименьшей концентрации в растворе).

Реакции обмена, написанные в молекулярной форме, не отражают особенностей взаимодействия между ионами в растворе. Сущность взаимодействия в растворах электролитов отражают ионно-молекулярные уравнения – полные и краткие. При составлении ионно-молекулярных уравнений:

1) сильные электролиты и одновременно растворимые вещества записывают в виде ионов;

2) слабые электролиты (малодиссоциирующие), нерастворимые, малорастворимые и газообразные вещества записывают в виде молекул с соответствующими значками: ↓ или ↑;

3) краткое ионно-молекулярное уравнение получают из полного путем исключения из него тех ионов, которые присутствуют в неизменном виде и количестве в правой и левой частях.

Примеры:

1. Молекулярное уравнение:

ВаСl2 + Nа24 = ВаSО4↓ + 2NаСl.

Полное ионно-молекулярное уравнение:

Ва2+ + 2Сl + 2Nа+ + SО = ВаSО4↓ + 2Nа+ + 2Сl .

Сущность ионного процесса выражает краткое ионно-молекулярное уравнение:

Ва2+ +SО = ВаSО4↓.

Поскольку ВаSО4 выпадает в осадок, который не участвует в обратной реакции, то и равновесие рассматриваемого процесса сильно смещено вправо, т.е. реакция практически идет до конца (∆G°= -60 кДж).

2. Nа2СО3 + Н24 = Nа24 + ,

2Nа+ + СО + 2Н+ + SО = 2Nа+ + SО + Н2О + СО2↑,

СО + 2Н+ = Н2СО3 = Н2О + СО2↑.

В результате реакции получается газообразное вещество и слабый электролит.

3. 2КСN + Н24 = 2НСN + К24,

Н+ +СN = НСN.

В результате реакции получается малодиссоциирующее соединение (слабый электролит) – НСN.

Обобщая этот пример, можно сделать вывод, что сильные кислоты вытесняют слабые из растворов их солей (аналогично сильные основания вытесняют слабые основания из растворов их солей).

К обменным ионным процессам относятся также реакции нейтрализации, в результате которых образуется слабый электролит – вода.

Например: НСl + КОН = Н2О + КСl,

Н+ + ОН ˉ = Н2О.

Реакции нейтрализации любых других сильных кислот и оснований протекают аналогично. Поскольку соль полностью диссоциирует на ионы, реакция в любом случае протекает лишь между ионами Н+ и ОН ˉ.

4. ZnСl2 + 4КОН = К2[Zn(ОН)4] + 2КCl,

Zn2+ + 4ОН‾ = [Zn(ОН)4]2‾.

В результате реакции образуется комплекс (комплексный ион).

5. НСN + СН3СООNа D СН3СООН + NаСN,


НСN + СН3СОО‾ D СН3СООН + СN‾.

4ОН + НСl D Н2О + NН4Сl,

4ОН + Н+ D Н2О + NН4+.

 
 


Слабые электролиты есть и в левой, и в правой частях уравнений реакций. Равновесие обратимого процесса в этих случаях смещается в сторону образования вещества, обладающего меньшей константой диссоциации. В первой реакции равновесие смещено влево (КНСN = 4,9·10‾10, КСН3СООН = 1,8·10‾5), во второй – вправо (КН2О = 1,8·10‾16, КNН4ОН = 1,8·10‾5). Это отвечает значениям ∆G° = 43 кДж и (-84 кДж), соответственно, для первой и второй реакций.

Электролитическая диссоциация воды. Водородный показатель.Изучение тщательно очищенной от посторонних примесей воды показало, что она обладает определенной, хотя и незначительной электрической проводимостью, заметно возрастающей с повышением температуры. Так, при 273К удельная электрическая проводимость воды составляет 1,5·10-8 Ом-1·см-1, при 289К – 6,2·10-8 Ом-1·см-1.

Наличие электрической проводимости может быть объяснено только тем, что молекулы воды, хотя и в незначительной степени, распадаются на ионы, т.е. вода является слабым электролитом.

Процесс диссоциации воды может быть записан с учетом электростатического взаимодействия полярных молекул (самоионизации), в ходе которого образуются ионы гидроксония и гидроксид-ионы:

2О D Н3О+ + ОН‾

или в упрощенной форме: Н2О D Н+ + ОН‾.

Выражение для константы электролитической диссоциации воды:

(при 25°С).

Ничтожно малая диссоциация воды позволяет считать концентрацию недиссоциированных молекул равной общей концентрации, которая для воды объемом 1л. составляет:

.

Найдем из выражения для Кд произведение двух постоянных при данной температуре величин:

Кд·[Н2О] = [Н+][ОН‾] = 1,8·10-16·55,6=10-14.

Произведение [Н+][ОН‾] называется ионным произведением воды (обозначается: КВ или Kw): КВ=[Н+][ОН‾]. Это величина постоянная при данной температуре.

Так при 25°С, ионное произведение воды КВ = [Н+][ОН‾] = 10-14.

Таким образом, для воды, разбавленных водных растворов кислот, щелочей, солей и др. соединений ионное произведение воды практически постоянная величина и зависит только от температуры:

Температура, 0С
КB 0,113·10-14 10-14 55·10-14

Растворы, в которых концентрация ионов водорода равна концентрации гидроксид-ионов, называют нейтральными. В чистой воде и нейтральных растворах при 25°С [Н+] = [ОН‾] = 10-7 моль/л. Если [Н+] > 10-7 моль/л, то среда кислая; если [Н+] < 10-7 моль/л, то среда щелочная.

Для удобства количественной характеристики кислотных или щелочных свойств растворов введена величина, называемая водородным показателем (рН) – это отрицательный десятичный логарифм концентрации ионов Н+:

рН = –lg[Н+].

- В нейтральной среде+]=10-7 моль/л, рН= – lg10-7 = 7;

- в кислой среде рН < ;

- в щелочной среде рН > 7.

Аналогично введен гидроксильный показатель (рОН) – это отрицательный десятичный логарифм концентрации гидроксид-ионов:

рОН= – lg[ОН­¯].

Прологарифмируем с обратным знаком выражение для КВ при 25°С, используем введенные показатели рН и рОН и получим рН + рОН = 14.

Понятие об индикаторах.Индикаторы – вещества, меняющие свою окраску в определенной области значений рН раствора.

Индикаторами могут быть слабые органические кислоты HInd и основания IndOH, молекулы и ионы которых имеют разную окраску. Будучи введенными в исследуемый раствор, индикаторы диссоциируют по одному из следующих механизмов:

HInd D H+ + Ind¯ (а)

IndOH D Ind+ + OH¯ (б).

Так как процесс диссоциации слабых электролитов обратим, положение равновесия в схемах (а) и (б) зависит от кислотности исследуемого раствора.

В кислых растворах индикаторы, представляющие собой слабые кислоты, в соответствии с принципом Ле-Шателье находятся преимущественно в виде молекул и окраска раствора соответствует молекулярной форме индикатора НInd.

Индикаторы, являющиеся слабыми основаниями, в растворах кислот, напротив, будут находиться в своей ионной форме Ind+, которая обусловливает окраску раствора.

К числу индикаторов, представляющих собой слабые органические кислоты, принадлежат лакмус, фенолфталеин, феноловый красный, ализариновый желтый. К индикаторам, представляющим слабые основания, относятся, например, метиловый оранжевый, метиловый красный. Выбор того или иного индикатора определяется интервалом рН, в котором необходимо поддерживать кислотность исследуемого раствора.

Например, лакмус

НInd D H+ + Ind­­­­¯

красный синий

рН < 6 рН > 8

рН = 6÷8 область перехода рН (фиолетовый цвет).

Гетерогенное равновесие. Произведение растворимости.Подавляющее большинство веществ обладает ограниченной растворимостью в воде и других растворителях. Поэтому на практике часто приходится встречаться с системами, в которых в состоянии равновесия находятся осадок и насыщенный раствор электролита. Вследствие динамического характера равновесия скорость процесса растворения осадка будет совпадать со скоростью обратного процесса кристаллизации.

Например, возьмем насыщенный раствор нерастворимого сильного электролита ВаSО4. В растворе устанавливается гетерогенное равновесие между осадком (твердой фазой) электролита и ионами электролита в растворе:

.

Его можно охарактеризовать с точки зрения закона действующих масс, записав выражение для константы гетерогенного равновесия К:

.

Преобразуем это выражение к виду: К[ВаSО4] = [Ва2+][SО42‾]; [ВаSО4] = const, как для твердого вещества, то К[ВаSО4] = const при данной температуре. Отсюда следует, что произведение концентраций ионов Ва2+ и SО42‾ также представляет собой постоянную величину. Это произведение называется произведением растворимости ПР:

ПР (BaSO4) = [Ва2+][SO42‾].

В общем виде для насыщенного раствора малорастворимого или нерастворимого сильного электролита АnBm, находящегося в равновесии с его твердой фазой, будет характерен следующий обратимый процесс:

,

для которого

ПР (AnBm) = [Аm+]n n-]m.

Таким образом, гетерогенное равновесие «осадок – насыщенный раствор» подчиняется правилу произведения растворимости: произведение концентраций ионов электролита, содержащихся в его насыщенном растворе, возведенных в степени, соответствующие стехиометрическим коэффициентам, есть величина постоянная при данной температуре и называется произведением растворимости (ПР).

Из понятия ПР вытекают три следствия:

1. Условие образования осадка.

При увеличении концентрации одного из ионов электролита в его насыщенном растворе (например, путем введения другого электролита, содержащего тот же ион) произведение концентраций ионов становится больше ПР. При этом равновесие смещается в сторону образования осадка.

Осадок образуется, если произведение концентраций ионов, возведенных в степень стехиометрических коэффициентов, больше величины произведения растворимости:m+]n·[Вn-]m > ПР(AnBm).

В результате образования осадка концентрация другого иона, входящего в состав электролита, тоже изменяется. Устанавливается новое равновесие, при котором произведение концентрации ионов электролита вновь становится равным ПР.

2. Условие растворения осадка.

Напротив, если в насыщенном растворе электролита уменьшить концентрацию одного из ионов (например, связав его каким-либо другим ионом), произведение концентраций ионов будет меньше значения ПР, раствор становится ненасыщенным, а равновесие между жидкой фазой и осадком сместится в сторону растворения осадка.

Осадок растворяется, если произведение концентраций ионов, возведенных в степень стехиометрических коэффициентов, меньше величины произведения растворимости: [Аm+]n·[Вn-]m < ПР (AnBm).

3. Условие получения одного малорастворимого соединения (II) из другого малорастворимого соединения (I): ПРII < ПРI. Например, химическое равновесие приведенной ниже реакции будет смещено вправо, в сторону образования AgI, т.к. ПР(AgI) = 1,5·10‾16 < ПР(AgCl) = 1,56·10‾10:

АgCl↓ + NaI D AgI↓ + NaCl

AgCl↓ + I‾ D AgI↓ + Cl‾.

Произведение растворимости характеризует растворимость вещества: чем больше ПР, тем больше растворимость. ПР – табличная величина.

Исходя из значений ПР, можно выразить растворимость малорастворимых сильных электролитов в воде и растворах, содержащих другие электролиты.

Пример.

Произведение растворимости йодида свинца (II) при 20°С равно 8·10‾9. Вычислите растворимость соли (в моль/л) при указанной температуре.

t=20°С ПР(PbI2)= 8·10‾9 Решение. Уравнение электролитической диссоциации растворенной соли (сильного электролита): PbI2 = Pb2+ + 2I‾. Уравнение гетерогенного равновесия в растворе: PbI2 (тв)↓ D Pb2+(р) + 2I‾(р). Обозначим искомую растворимость PbI2 через s (моль/л): s = С (PbI2).
S-?

Концентрация растворившейся соли PbI2 в насыщенном растворе составляет s; за счет диссоциации данного сильного электролита в соответствии со стехиометрическими соотношениями в растворе содержится s моль/л ионов Pb2+ и 2s моль/л ионов I‾, т.е. [Pb2+] = s; [I‾] = 2s.

Согласно правилу произведения растворимости и с учетом приведенных соотношений:

,

моль/л.

Ответ:S = 1,3*10-3 моль/л.

Гидролиз солей

Гидролизом солей называют реакции обмена между водой и растворенными в ней солями. Гидролиз – частный случай сольволиза – реакции обмена между растворителем и растворенным веществом, разновидность реакций ионного обмена. В результате протекания гидролиза:

- происходит изменение pH среды;

- образуются малодиссоциирующие соединения.

Механизм гидролиза.Для разных типов соединений он различен. Так, гидролиз солей можно рассматривать:

во-первых, как процесс, обратный реакциям нейтрализации; реакция нейтрализации между различными по силе кислотами и основаниями не всегда протекает до конца вследствие протекания обратного процесса – гидролиза образующейся соли, например:

НСN + КОН D КСN + НОН;

во-вторых, как результат поляризационного взаимодействия ионов соли с их гидратной оболочкой (все ионы в растворе гидратированы); чем значительнее это взаимодействие, тем интенсивнее протекает гидролиз.

Рассмотрим возможные случаи поляризующего действия ионов на гидратную оболочку:

Катионы.

В водном растворе катионы существуют в виде катионных аквакомплексов, которые образуются в результате донорно-акцепторного взаимодействия К – ОН2 ([Cu(H2O)4]2+, [Zn(H2O)4]2+, [Al(H2O)6]3+ и т.д.). Аквакомплексы, в свою очередь, гидратированы посредством водородных связей. Можно считать, что чем выше заряд и меньше размеры катиона, тем сильнее его акцепторная способность (прочнее связь К – ОН2), тем сильнее поляризуется связь О–Н координированной молекулы воды и тем сильнее водородная связь между координированной молекулой Н2О в комплексе и молекулами воды гидратной оболочки комплекса. Все это может привести к разрыву связи О–Н в координированной молекуле Н2О, к превращению водородной связи Н…ОН2 в ковалентную с образованием ОН и гидроксоаквакомплекса по схеме:

 
 

В соответствии с последовательным усилением акцепторной способности катионов (увеличением их заряда и уменьшением размеров) возможны два случая:

1) отсутствие заметного разложения молекул воды:

Na+ + HOH D реакция практически не идет

Подобным образом ведут себя слабые акцепторы электронных пар – катионы щелочных и щелочно-земельных металлов (Na+, K+, Сs+, Rb+, Fr+, Ca2+, Ba2+, Sr2+), т.е. катионы, образующие сильные основания – щелочи;

2) обратимое разложение молекул воды с образованием гидроксоаквакомплексов:

[Al(OH2)6]3+ + HOH D [Al(OH2)5(OH)]2+ + OH3+

или упрощенно:

Al3+ + HOH D AlOH2+ + H+.

Избыток ионов Н+ обусловливает кислую среду раствора. Этот случай характерен для двух- и трехзарядных катионов (Cu2+, Fe2+, Fe3+, Cr3+ и т.д.), т.е. катионов, образующих слабые основания. Чем слабее основание, тем интенсивнее протекает гидролиз.

Анионы.

 
 

Их гидратация осуществляется за счет водородной связи, которая может перейти в ковалентную в результате поляризационного взаимодействия между анионом и молекулами воды:

Чем больше отрицательный заряд и меньше размер аниона, тем он более сильный донор электронных пар и тем легче отрывает протон от молекулы воды. Например, прочность водородной связи возрастает в ряду анионов, образованных p-элементами III периода:

ClO < SO < PO < SiO .

В зависимости от электродонорной активности анионов возможны два случая:

1) отсутствие заметного разложения молекул воды:

Cl + HOH D реакция практически не идет;

NO + HOH D реакция практически не идет;

подобным образом ведут себя слабые доноры электронных пар – однозарядные анионы (Cl ˉ, Brˉ, I ˉ, NO , ClO ), анионы SO , SiF и другие кислотные остатки сильных кислот;

2) обратимое разложение молекул воды:

CO + HOH D HCO + OH ˉ.

Избыток ОНˉ– ионов обусловливает щелочную реакцию среды. Этот случай характерен для одно- двух- и многозарядных анионов (СNˉ, CO , SO , S , PO и т.д.), т.е. кислотных остатков слабых кислот и кислот средней силы. Чем слабее кислота, тем интенсивнее протекает гидролиз.

Суммарный эффект гидролиза определяется природой находящихся в растворе катионов и анионов.

Различают следующие варианты взаимодействия солей с молекулами воды:

I. Соли сильных оснований и слабых кислот (KCN, CH3COONa, Na2CO3, Na2S, K2S и т.д.).

При диссоциации данных солей в растворе образуется катионы, слабо поляризующие гидратную оболочку, т.е. практически не взаимодействующие с водой, и анионы, поляризующие гидратную оболочку, т.е. обратимо взаимодействующие с водой. В этом случае гидролиз идет по аниону, при этом образуется щелочная среда (рН > 7).

Пример 1: процесс гидролиза цианида калия, КСN – соль, образована сильным основанием КОН и слабой кислотой НСN.

Уравнение электролитической диссоциации соли:

КCN = K + CN .

Ионно-молекулярные уравнения гидролиза:

К+ + НОН D реакция практически не идет,

СN­­¯ + НОН D НСN + ОН¯.

Молекулярное уравнение гидролиза: КСN + НОН D НСN + КОН.

Пример 2: гидролиз сульфида натрия,Nа2S – соль образована слабой многоосновной кислотой Н2S и сильным основанием NаОН. Так как диссоциация многоосновных кислот протекает ступенчато, то и гидролиз их солей будет также протекать ступенчато.

Уравнение электролитической диссоциации соли:

Na2S = 2Na + S ,

I ступень:

Na+ + HOH D реакция практически не идет,

S + HOH D НS + ОН

или в молекулярной форме

2S + НОН D NаНS + NаОН.

II ступень:

НS + НОН D Н2S + ОН

х.р.

или в молекулярной форме

NаНS + НОН D Н2S + NаОН.

х.р.

Гидролиз по первой ступени всегда протекает в большей степени, чем по второй. Это обусловлено уменьшением константы диссоциации при переходе от Кд1 к Кд2 (для Н2S Кд1д2): поскольку ион НS диссоциирует слабее, чем Н2S, то он и образуется в первую очередь при гидролизе Nа2S.

Кроме того, ионы ОН, образующиеся при гидролизе по первой ступени, способствуют смещению равновесия второй ступени влево, т.е. также подавляют гидролиз по второй ступени.

Вывод: если соль образована сильным основанием и слабой кислотой, то происходит обратимый гидролиз по аниону. Растворы таких солей имеют щелочную среду. В обычных условиях гидролиз по многозарядному аниону протекает по первой ступени с образованием кислых солей, т.к. последующие ступени подавлены из-за накопления в растворе ионов ОН.

II. Соли слабых оснований и сильных кислот (NH4Cl, CuCl2, CuSO4, ZnCl2, AgNO3 и т.д.).

При диссоциации данных солей образуются катионы, поляризующие гидратную оболочку, т.е. обратимо взаимодействующие с водой, и анионы, слабополяризующие гидратную оболочку, т.е. практически не взаимодействующие с водой. В этом случае гидролиз протекает по катиону, при этом образуется кислая среда (рН<7). Примером служит процесс гидролиза СuСl2, соли, образованной слабым двукислотным основанием Сu(ОН)2 и сильной кислотой НСl:

СuСl2 = Сu2+ + Сl ,

Сu2+ + НОН D СuОН+ + Н+,

Сl + НОН D реакция практически не идет

или в молекулярной форме

СuСl2 + НОН D СuОНСl + НСl.

Так как диссоциация многокислотных оснований протекает ступенчато, то и гидролиз их солей будет протекать также ступенчато, но константа диссоциации Сu(ОН)2 по первой ступени Кд1 больше константы диссоциации по второй ступени Кд2д1 > Кд2). Т.е. ион СuОН+ диссоциирует слабее, чем Сu(ОН)2, то он и образуется в первую очередь при гидролизе. Кроме того, ионы Н+, образующиеся при гидролизе по первой ступени, способствуют смещению равновесия второй ступени влево, т.е. подавляют гидролиз по второй ступени, он происходит в ничтожно малой степени и его не учитывают.

Вывод: если соль образована слабым основанием и сильной кислотой, то происходит обратимый гидролиз по катиону. Растворы таких солей имеют кислую среду. В обычных условиях гидролиз по многозарядному катиону протекает по первой ступени с образованием основных солей, т.к. последующие ступени подавлены из-за накопления в растворе ионов Н+.

III. Соли слабых оснований и слабых кислот (Fe2(CO3)3, Al2S3, (NH4)3PO4 и т.д.).

При диссоциации данных солей в растворе образуются катионы и анионы, поляризующие гидратную оболочку, т.е. взаимодействующие с водой. В этом случае гидролиз протекает и по катиону, и по аниону. Примером может служить процесс гидролиза СН­3СООNН4 - соли, образованной слабой уксусной кислотой СН­3СООН и слабым основанием NН4ОН. Запишем ионно-молекулярные уравнения отдельно для процессов гидролиза катиона и аниона, протекающих одновременно:

СН­3СООNН­4 = СН­3СОО + NН4+,

СН­3СОО + НОН D СН­3СООН + ОН,

х.р.

4+ + НОН D NН4ОН + Н+.

х.р.

Итак, при гидролизе аниона образуются ионы ОН, а при гидролизе катиона – ионы Н+. Эти ионы не могут в значительных концентрациях сосуществовать одновременно; они соединяются, образуя молекулы слабого электролита – воды. Это приводит к смещению обоих равновесий вправо. Иначе говоря, в этом случае гидролиз катиона и гидролиз аниона взаимно усиливают друг друга, и в совокупности процесс протекает практически необратимо.

Суммарное ионно-молекулярное уравнение:

СН­3СОО + NН4+ + Н2О = СН­3СООН + NН4ОН.

Молекулярное уравнение:

СН­3СООNН­4 + Н2О = NН4ОН + СН­3СООН.

Реакция растворов солей, образованных слабой кислотой и слабым основанием, определяется относительной силой образовавшихся кислоты и основания, зависит от соотношения их констант диссоциации. Если константа диссоциации кислоты больше константы диссоциации основания, то раствор имеет слабокислую реакцию, при обратном соотношении констант диссоциации – слабощелочную, т.е. рН близко к семи (рН ≈ 7).

Второй пример:

Аl2S3 – соль образована слабым основанием Аl(ОН)3 и слабой кислотой Н2S. Ионы, образовавшиеся в растворе при диссоциации данной соли, будут одновременно подвергаться гидролизу. При этом будет происходить взаимное усиление гидролиза каждого из ионов (смещение химического равновесия вправо) из-за связывания ионов Н+ и ОНˉ в молекулы слабого электролита Н2О. Поэтому гидролиз каждого из ионов будет идти по всем ступеням, до конца с образованием Аl(ОН)3 и Н2S:

Аl2S3 = 2Аl3+ + 3 S2–

I ступень:

Аl3+ + НОН D АlОН2+ + Н+,

х.р.

S2– + НОН D НS + ОНˉ;

х.р.

II ступень:

АlОН2+ + НОН ­D Аl(ОН)2+ + Н+,

х.р.

НS + НОН DН2S + ОНˉ;

х.р.

III ступень:

Аl(ОН)2+ + НОН = Аl(ОН)3 + Н+.

Суммарное ионно-молекулярное уравнение:

2Аl3+ + 3S2– + 6Н2О = 2Аl(ОН)3 + 3Н2S.

Молекулярное уравнение:

Аl2S3 + 6Н2О = 2Аl(ОН)3 + 3Н2S.

Вывод: если соль образована слабым основанием и слабой кислотой, то гидролиз происходит и по катиону, и по аниону, взаимно усиливающий друг друга, протекающий практически необратимо с образованием слабого основания и слабой кислоты. Характер среды близок к нейтральному.

IV. Соли сильных оснований и сильных кислот (NаСl, К24, NаNО3 и т.д.).

В этом случае поляризующее влияние катионов и анионов на молекулы воды невелико. Гидролиз практически не происходит, поэтому растворы таких солей практически нейтральны (рН ≈ 7). Например:

NaCl = Na + Cl ,

+ + НОН D реакция практически не идет,

Сl + НОН D реакция практически не идет,

NаСl + НОН D реакция практически не идет.

Вывод: если соль образована сильным основанием и сильной кислотой, то гидролиз не происходит; растворы таких солей практически нейтральны (рН ≈ 7).

V. Совместный гидролиз двух солей. Рассмотрим, что произойдет при сливании растворов двух солей, одна из которых образована слабым основанием и сильной кислотой, а другая сильным основанием и слабой кислотой. Например, при сливании растворов FeCl3 и Na23:

2FеСl3 + 3Nа2СО3 + 6Н2О = 2Fе(ОН)3 + 3Н2СО3 + 6NаСl

I ступень:

3+ + НОН D FеОН2+ + Н+,

х.р.

СО32– + НОН D НСО3 + ОН

х.р.

и т.д. по ступеням, как в случае соли, образованной слабой многоосновной кислотой и слабым многокислотным основанием.

Образующиеся ионы Н+ и ОН будут нейтрализовать друг друга на каждой ступени гидролиза, связываясь в молекулы слабого электролита воды, гидролиз обоих ионов усиливается, что приводит к протеканию всех ступеней гидролиза и образованию конечных продуктов Fе(ОН)3 и Н2СО3. Суммарное ионно-молекулярное уравнение:

2Fе3+ + 3СО32– + 6НО = 2Fе(ОН)3­­↓ + 3Н2СО3.

С учетом разложения Н2СО3 на Н2О и СО2, окончательные уравнения (суммарное ионно-молекулярное и молекулярное) будут иметь вид:

2Fе3+ + 3СО32– + 3Н2О = 2Fе(ОН)3↓ + 3СО2↑.

2FеСl3 + 3Nа2СО3 + 3Н2О = 2Fе(ОН)­3↓ + 3СО2↑ + 6NаСl.

В подобных случаях в осадок выпадает наименее растворимый из возможных продуктов гидролиза. Так, растворимость карбоната гидроксомеди (СuОН)2СО3 меньше, чем гидроксида меди Сu(ОН)2. Поэтому при сливании растворов СuSО4 и Nа2СО3 конечным продуктом гидролиза является именно (СuОН)2СО3:

2СuSО4 + 2Nа2СО3 + Н2О = (СuОН)­2СО3↓ + СО2↑ + 2Nа24,

2Сu2+ + 2СО32– + Н2О = (СuОН)2СО3↓ + СО2↑.

Вывод: если в растворе присутствуют две соли, одна из которых гидролизуется по аниону, другая по катиону, то гидролиз обеих солей усиливается, протекает необратимо с образованием конечных продуктов (слабого основания и слабой кислоты). Растворы таких солей имеют среду, близкую к нейтральной (рН ≈ 7).

VI. Существенно отличен характер гидролизаковалентных соединений.Большинство соединений неметаллов с неметаллами в воде претерпевает необратимое гидролитическое разложение, с образованием соответствующих кислот, например:

SiCl4 + 3HOH = H2SiO3 + 4HCl,

SiS2 + 3HOH = H2SiO3 + 2H2S.

Количественные характеристики процесса гидролиза.Количественно гидролиз характеризуется степенью гидролиза h и константой гидролиза Кг.

Степень гидролиза представляет собой отношение числа молекул Nг, подвергшихся гидролизу, к общему числу растворенных молекул Nо, которое определяется концентрацией вещества:

.

Степень гидролиза соли, как правило, невелика, зависит от константы гидролиза и концентрации соли и выражается в процентах или долях единицы.

Так, в 0,1 м СН­3СООNа и NН4Сl при 298 К она составляет примерно 10–4, т.е. в этих растворах гидролизована лишь одна из 10 000 молекул. Причина столь низкой степени гидролиза кроется в том, что один из участников реакции – вода является очень слабым электролитом. Поэтому положение равновесия реакции гидролиза сильно смещено в сторону исходных веществ.

Более конкретной характеристикой является константа гидролиза. Запишем уравнение г








Date: 2016-07-05; view: 77; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.236 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию