Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Классификация рефлексов





1. По биологическому значению:

o пищевые

o оборонительные

o ориентировочные

o половые

o и др.

2. По отвечающему рабочему органу:

o двигательные

o секреторные

o сосудистые

o и др.

3. По нахождению нервного центра:

o спинальные (нервные центры находятся в спинном мозге - мочеиспускание, дефекация и др.,)

o бульбарные (нервные центры находятся в продолговатом мозге - кашель, чиханье и др.)

o мезенцнфальные (нервные центры находятся в среднем мозге - выпрямление тела, ходьба)

o диэнцефальные (в промежуточном мозге - терморегуляция и др.)

o корковые (нервные центры находятся в коре больших полушарий - все условные рефлексы).

4. По сложности рефлекса:

o простые

o сложные (цепные рефлексы)

5. По отвечающему органу:

o вегетативные

o соматические

6. По происхождению:

o врожденные (безусловные)

o приобретенные (условные).

Си́напс[1] (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумянейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульсамежду двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Типичный синапс — аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксонапередающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае — участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель — промежуток шириной 10—50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленныерецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либофермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

7. Вегетати́вная не́рвная систе́ма (от лат. vegetatio — возбуждение, от лат. vegetativus — растительный), ВНС,автономная нервная система, ганглионарная нервная система (от лат. ganglion — нервный узел), висцеральная нервная система (от лат. viscera — внутренности), органная нервная система, чревная нервная система, systema nervosum autonomicum (PNA) — часть нервной системы организма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватной реакции всех его систем.

Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желёз внутренней и внешней секреции, кровеносных и лимфатических сосудов. Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.

Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и метасимпатическую. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров.

В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.

Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.

Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения.

Метасимпатическая нервная система представлена нервными сплетениями и мелкими ганглиями в стенках пищеварительного тракта, мочевого пузыря, сердца и некоторых других органов.

Деятельность вегетативной нервной системы не зависит от воли человека.

Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность. Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.

Под контролем автономной системы находятся органы кровообращения, дыхания, пищеварения, выделения, размножения, а также обмен веществ и рост. Фактически эфферентный отдел ВНС осуществляет нервную регуляцию функций всех органов и тканей, кроме скелетных мышц, которыми управляет соматическая нервная система.

В отличие от соматической нервной системы, двигательный эффекторный нейрон в автономной нервной системе находится на периферии, и спинной мозг лишь косвенно управляет его импульсами.

Термины автомномная система, висцеральная система, симпатический отдел нервной системы неоднозначны. В настоящее время симпатическими называют только часть висцеральных эфферентных волокон. Однако различные авторы используют термин «симпатический» по-разному:

· в узком понимании, как описано в предложении выше;

· в качестве синонима термина «автономный»;

· как название всей висцеральной («вегетативной») нервной системы — как афферентной, так и эфферентной.

Терминологическая путаница возникает также, когда автономной называют всю висцеральную систему (и афферентную, и эфферентную).

Вегетати́вная не́рвная систе́ма (от лат. vegetatio — возбуждение, от лат. vegetativus — растительный), ВНС,автономная нервная система, ганглионарная нервная система (от лат. ganglion — нервный узел), висцеральная нервная система (от лат. viscera — внутренности), органная нервная система, чревная нервная система, systema nervosum autonomicum (PNA) — часть нервной системы организма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватной реакции всех его систем.

Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желёз внутренней и внешней секреции, кровеносных и лимфатических сосудов. Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.

Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и метасимпатическую. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров.

В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.

Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.

Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения.

Метасимпатическая нервная система представлена нервными сплетениями и мелкими ганглиями в стенках пищеварительного тракта, мочевого пузыря, сердца и некоторых других органов.

Деятельность вегетативной нервной системы не зависит от воли человека.

Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность. Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.

Под контролем автономной системы находятся органы кровообращения, дыхания, пищеварения, выделения, размножения, а также обмен веществ и рост. Фактически эфферентный отдел ВНС осуществляет нервную регуляцию функций всех органов и тканей, кроме скелетных мышц, которыми управляет соматическая нервная система.

В отличие от соматической нервной системы, двигательный эффекторный нейрон в автономной нервной системе находится на периферии, и спинной мозг лишь косвенно управляет его импульсами.

Термины автомномная система, висцеральная система, симпатический отдел нервной системы неоднозначны. В настоящее время симпатическими называют только часть висцеральных эфферентных волокон. Однако различные авторы используют термин «симпатический» по-разному:

· в узком понимании, как описано в предложении выше;

· в качестве синонима термина «автономный»;

· как название всей висцеральной («вегетативной»)[3] нервной системы — как афферентной, так и эфферентной.

8. Эндокри́нная систе́ма — система регуляции деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь, либо диффундирующих через межклеточное пространство в соседние клетки.

Не́йроэндокри́нная (эндокринная) система координирует и регулирует деятельность практически всех органов и систем организма, обеспечивает его адаптацию к постоянно изменяющимся условиям внешней и внутренней среды, сохраняя постоянство внутренней среды, необходимое для поддержания нормальной жизнедеятельности данного индивидуума. Имеются чёткие указания на то, что осуществление перечисленных функций нейроэндокринной системы возможно только в тесном взаимодействии с иммунной системой.

Эндокринная система делится на гландулярную эндокринную систему (или гландулярный аппарат), в которой эндокринные клетки собраны вместе и формируют железу внутренней секреции, и диффузную эндокринную систему. Железа внутренней секреции производит гландулярные гормоны, к которым относятся все стероидные гормоны, гормоны щитовидной железы и многие пептидные гормоны. Диффузная эндокринная система представлена рассеянными по всему организму эндокринными клетками, продуцирующими гормоны, называемые агландулярными — (за исключением кальцитриола) пептиды. Практически в любой ткани организма имеются эндокринные клетки.

Передняя доля гипофиза — важнейший орган регулирования основных функций организма: именно здесь вырабатываются шесть важнейших тропных гормонов, регулирующих секреторную активность периферических эндокринных желез — тиреотропный гормон (ТТГ), адренокортикотропный гормон (АКТГ), соматотропный гормон (СТГ или гормон роста), лактотропный гормон (пролактин) и два гонадотропных гормона, регулирующих функции периферических половых желёз: фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ). Тиреотропин ускоряет или замедляет работу щитовидной железы, АКТГ регулирует работу коркового вещества надпочечников, соматотропин (гормон роста) опосредованно (через соматомедины или инсулиноподобные факторы роста) контролирует процессы роста и развития костной системы, хрящей и мышц. Избыточная выработка гормона роста у взрослого человека ведёт к развитию акромегалии, которая проявляется в увеличением толщины костей, разрастанием хрящевой ткани (носа, ушных раковин) и костей лицевого черепа. Гипофиз тесно связан с гипоталамусом, вместе с которым является связующим звеном между мозгом, периферической нервной системой и системой кровообращения. Связь между гипофизом и гипоталамусом осуществляется с помощью разных химических веществ, которые вырабатываются в так называемых нейросекреторных клетках.

Задняя доля гипофиза не вырабатывает собственных гормонов, её роль в организме заключается в накоплении и секреции двух важных гормонов, вырабатываемых нейросекреторными клетками ядер гипоталамуса: антидиуретического гормона (АДГ), участвующий в процессах регуляции водного баланса организма, повышая степень обратного всасывания жидкости в почках и окситоцина, который отвечает за сокращение гладких мышц и, в частности, матки во время родов.

Гормональная регуляция

регуляция жизнедеятельности организма животных и человека, осуществляемая при участии поступающих в кровь гормонов; одна из систем саморегуляции функций, тесно связанная с нервной и гуморальной системами регуляции и координации функций. Гормонывыделяются в кровь железами внутренней секреции, разносятся по всему организму и влияют на состояние и деятельность различных органов и тканей. По характеру действия гормоны могут быть разделены на 2 группы. Одни действуют на определённые органы (органы-мишени), например тиреотропный гормон действует главным образом на щитовидную железу, адренокортикотропный (АКТГ) — на кору надпочечников, эстрогены — на матку и т. д. Др. гормоны (Кортикостероиды, ростовой, или соматотропный, гормон и некоторые др.) обладают общим, или генерализованным, действием на все ткани организма. Так, Инсулин действует на обмен углеводов; активируя гексокиназную реакцию, он также может стимулировать биосинтез белка. Тестостерон и др. Андрогеныусиливают процессы ассимиляции (анаболическое действие); их введение сопровождается задержкой азота в организме, Глюкокортикоидывызывают многообразные изменения в обмене веществ, стимулируют образование гликогена в печени, тормозят утилизацию глюкозы на периферии и усиливают распад белков, особенно в соединительной и лимфоидной ткани. Эстрогены стимулируют синтез в матке фосфолипидов, белка и вызывают оводнение ткани этого органа. Гормон роста усиливает синтез белка в организме, влияет на жировой, фосфорный и кальциевый обмен. По-видимому, действие гормонов на обмен веществ связано с изменением скорости ферментативных реакций, и в большинстве случаев это осуществляется путём активации ферментов. Действие гормонов на биосинтез белка связано со стимуляцией образования информационной рибонуклеиновой кислоты (и-РНК), определяющей структуру синтезируемого белка. Г. р. обмена веществ обеспечивает нормальное функционирование органов и тканей. Рост и половое созревание организма регулируют ростовые и половые гормоны. В случае необходимости мобилизация возможностей организма также осуществляется при участии Г. р. Например, при опасности и вызванном ею мышечном напряжении усиливается поступление в кровьАдреналина, повышающего уровень сахара в крови и увеличивающего кровоснабжение сердца и мозга; при интенсивных повреждающих воздействиях усиливается выработка адренокортикотропного гормона и др.

Результаты многих экспериментов позволили предположить, что гормоны обладают способностью активировать гены. Так, введение насекомым гормона линьки — экдизона — вызывает образование особых вздутий на гигантских хромосомах. Анализ этих вздутий показал, что в них происходит интенсивный процесс образования РНК. Поскольку изменения, касающиеся хромосом и синтеза РНК, опережают начало процесса окукливания, считают, что первым результатом действия экдизона является активация генов, затем стимуляция биосинтеза РНК и образование соответствующих ферментов. Последние обеспечивают процесс метаморфоза.

Многообразие действия гормонов требует для обеспечения нормальной деятельности организма точного соответствия выработки гормонов его потребностям. Это точное и тонкое соответствие обеспечивается взаимовлиянием нервных, гуморальных и гормональных факторов. В одних случаях связь нервной системы с эндокринной железой — непосредственная. Это доказано для мозгового вещества надпочечников: раздражение чревного нерва приводит к повышению выделения адреналина. В др. случаях возбуждение передаётся по нервным волокнам сначала в Гипоталамус, где под их влиянием образуются вещества (релизинг-факторы, или высвобождающие факторы), поступающие в гипофиз и вызывающие дополнительное выделение гипофизарных (так называемых тропных) гормонов, стимулирующих образование периферической железой соответствующего гормона. Хотя релизинг-факторы не получены в чистом виде, образование их в гипоталамусе доказано для адренокортикотропного, лютеинизирующего, фолликулостимулирующего, соматотропного и некоторых др. гормонов. Выделение гормонов регулируется также и по принципу механизмов с обратной связью (плюс — минус взаимодействие), Если по тем или др. причинам в организме увеличивается количество какого-нибудь гормона, это приводит к торможению выделения релизинг-фактора гипоталамусом, что вызывает уменьшение выделения соответствующего тропного гормона гипофизом, а затем и снижение секреции гормона периферической железой. Если же концентрация какого-либо гормона в крови уменьшается (например, в случае ускоренного распада его в тканях), это приводит к усилению выделения релизинг-факторов, увеличению выделения тропных гормонов гипофизом и биосинтеза гормона в периферических железах. Определённое значение в Г. р. имеет механизм саморегуляции. Так, показано, что повышение концентрации глюкозы в крови приводит к усилению выделения инсулина и, следовательно, — уменьшению концентрации глюкозы. Недостаток солей натрия стимулирует выделение гормона коры надпочечников Альдостерона, действие которого связано с ускорением процессов реабсорбции солей натрия в почечных канальцах и тем самым задержкой их в организме. Таким образом, система регуляции выработки гормонов обеспечивает Г. р. обмена веществ и др. функций организма.

9. Сенсорная система — совокупность периферических и центральных структур нервной системы, ответственных за восприятие сигналов различных модальностей из окружающей или внутренней среды. Сенсорная система состоит из рецепторов, нейронных проводящих путей и отделов головного мозга, ответственных за обработку полученных сигналов. Наиболее известными сенсорными системами являютсязрение, слух, осязание, вкус и обоняние. С помощью сенсорной системы можно почувствовать такие физические свойства, как температура,вкус, звук или давление.

Также сенсорными системами называют анализаторы. Понятие «анализатор» ввёл российский физиолог И. П. Павлов. Анализаторы (сенсорные системы) — это совокупность образований, которые воспринимают, передают и анализируют информацию из окружающей ивнутренней среды организма.

Сенсорные системы подразделяются на внешние и внутренние; внешние снабжены экстерорецепторами, внутренние — интерорецепторами. В обычных условиях на организм постоянно осуществляется комплексное воздействие, и сенсорные системы работают в постоянном взаимодействии. Любая психофизиологическая функция полисенсорна.

К основным принципам конструкции сенсорных систем относятся:

Принцип многоканальности (дублирование с целью повышения надёжности системы)

Принцип многоуровневости передачи информации

Принцип конвергенции (концевые развлетвления одного нейрона контактируют с несколькими нейронами предыдущего уровня; воронка Шеррингтона)

Принцип дивергенции (мультипликации; контакт с несколькими нейронами более высокого уровня)

Принцип обратных связей (у всех уровней системы есть и восходящий, и нисходящий путь; обратные связи имеют тормозное значение как часть процеса обработки сигнала)

Принцип кортикализации (в новой коре представлены все сенсорные системы; следовательно, кора функционально многозначна, и не существует абсолютной локализации)

Принцип двусторонней симметрии (существует в относительной степени)

Принцип структурно-функциональных корреляций (кортикализация разных сенсорных систем имеет разную степень)

Раздражимость как свойство организма — способность к ответу, позволяющая приспособиться к условиям среды. Раздражителем может быть любое химико-физическое изменение среды. Рецепторные элементы нервной системы позволяют воспринимать существенные раздражители и трансформировать их в нервные импульсы.

Наиболее важны следующие четыре характеристики сенсорных стимулов:

тип

интенсивность (определяется деятельностью нижних уровней сенсорных систем; носит S-образный характер, то есть наибольшие изменения частоты импульсации нейрона происходят при варьировании интенсивности в средней части кривой, что позволяет улавливать малые изменения сигналов низкой интенсивности — закон Вебера — Фехнера)

местонахождение (например, локализация источника звука происходит благодаря разному времени прихода звуковой волны на каждое ухо (для низкочастотных сигналов) или межушным различиям стимуляции по интенсивности (для высокочастотных сигналов); в любом случае импульсация, несмотря на теоретическую возможность широкой дивергенции, передаётся по принципу меченой линии, что позволяет определить источник сигнала) продолжительность.

Помимо «принципа меченой линии» иррадиацию возбуждения ограничивает латеральное торможение (то есть возбуждённые рецепторы или нейроны затормаживают соседние клетки, обеспечивая контраст)[6].

Зрительная система

Оптикобиологическая бинокулярная (стереоскопическая) система, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра(света), создавая изображение, в виде ощущения (сенсо́рного чувства) положения предметов в пространстве. Зрительная система обеспечивает функцию зрения.

Зрительная система (зрительный анализатор) у млекопитающих включает следующие анатомические образования:

периферический парный орган зрения — глаз (с его воспринимающими свет фоторецепторами — палочками и колбочками сетчатки);

нервные структуры и образования ЦНС: зрительные нервы, хиазма, зрительный тракт, зрительные пути — II-я пара черепно-мозговых нервов, глазодвигательный нерв — III-я пара,блоковый нерв — IV-я пара и отводящий нерв — VI-я пара;

латеральное коленчатое тело промежуточного мозга (с подкорковыми зрительными центрами), передние бугры четверохолмия среднего мозга (первичные зрительные центры);

подкорковые (и стволовые) и корковые зрительные центры: латеральное коленчатое тело и подушки зрительного бугра, верхние холмики крыши среднего мозга (четверохолмия) изрительная кора.

Зрение человека

Процесс психофизиологической обработки изображения объектов окружающего мира, осуществляемый зрительной системой, и позволяющий получать представление о величине, форме (перспективе) и цвете предметов, их взаимном расположении и расстоянии между ними. Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук — оптики (в том числе биофизики), психологии, физиологии, химии (биохимии). На каждом этапе восприятия возникают искажения, ошибки, сбои, но мозг человека обрабатывает полученную информацию и вносит необходимые коррективы. Эти процессы носят неосознаваемый характер и реализуются в многоуровневой автономной корректировке искажений. Так устраняются сферическая и хроматическая аберрации, эффекты слепого пятна, проводится цветокоррекция, формируетсястереоскопическое изображение и т. д. В тех случаях, когда подсознательная обработка информации недостаточна, или же избыточна, возникают оптические иллюзии.

Слуховая система

Сенсорная система, обеспечивающая кодирование акустических стимулов и обусловливающая способность животных ориентироваться в окружающей среде посредством оценки акустических раздражителей. Периферические отделы слуховой системы представлены органами слуха и лежащими во внутреннем ухе фонорецепторами. На основе формирования сенсорных систем (слуховой и зрительной) формируется назывательная (номинативная) функция речи — ребёнок ассоциирует предметы и их названия.

Человеческое ухо состоит из трех частей:

Наружное ухо — латеральная часть периферического отдела слуховой системы млекопитающих, птиц, некоторых пресмыкающихся и единичных видов земноводных. У наземных млекопитающих включает ушную раковину и наружный слуховой проход; от среднего уха отделяется барабанной перепонкой. Иногда последнюю рассматривают в качестве одной из структур наружного уха.

Среднее ухо — часть слуховой системы млекопитающих (в том числе человека), развившаяся из костей нижней челюсти и обеспечивающая преобразование колебаний воздуха в колебания жидкости, наполняющей внутреннее ухо.[18] Основной частью среднего уха является барабанная полость — небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко — они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Внутреннее ухо — один из трёх отделов органа слуха и равновесия. Является наиболее сложным отделом органов слуха, из-за своей замысловатой формы называется лабиринтом.

Date: 2016-11-17; view: 340; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию