Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Тема 1.2 Сплавы железа с углеродом





 

К железоуглеродистым сплавам относятся стали и чугуны. Основными элементами, от которых зависят структура и свойства сталей и чугунов, являются железо и углерод.

Железо может находиться в двух аллотропических формах —α и γ. Железо с углеродом образует твердые растворы внедрения и химическое соединение. α-железо растворяет очень мало углерода (до 0,02 % при 727 °С). Твердый раствор углерода и других элементов в α -железе называется ферритом. Феррит имеет низкую твердость и прочность, γ-железо растворяет значительно боль­шее количество углерода —до 2,14 % при 1147 °С. Твердый раствор углерода и других элементов в γ-железе называется аустенитом. В железоуглеродистых сплавах он может существовать только при вы­соких температурах. Аустенит пластичен.

Железо с углеродом также образует химическое соединение Fe3C, называемое цементитом, или карбидом железа. В цементите содер­жится 6,67 % С; он имеет высокую твердость, но чрезвычайно низкую, практически нулевую, пластичность.

Сплавы железа с углеродом, в которых в результате первичной кри­сталлизации в равновесных условиях получается аустенитная струк­тура, называют сталями.

Сталь —это железоуглеро­дистые сплавы с содержанием до 2,14 % С. Сплавы с содержанием более 2,14 % С, называют чугунами. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми.

Процесс, в результате которого углерод выделяется в свободном состоянии в виде графита, называют графитизацией. Графит является неметаллической фазой.

 

«Чугун»

В зависимости от состояния углерода в чугуне различают: белый чугун, в котором весь углерод связан в цементит; серый чугун в котором весь углерод находится в свободном состо­янии в виде графита или часть углерода (большая) находится в виде графита, а часть в связанном состоянии в виде цементита; форма графита пластинчатая (рис. 10, а); высокопрочный чугун, то же, что и серый чугун, но форма графита шаровидная (рис. 10, б); ковкий чугун, то же, что и серый чугун, но форма графита хлопье­видная (рис. 10, в).

 

 
 

 


Рисунок 10 Микроструктура чугуна с различной формой графита и внешний вид графитовых включений в чугуне: а) пластинчатый графит в сером чугуне; б) шаровидный графит в высокопрочном чугуне; в) хлопьевидный графит в ковком чугуне

 

Серый чугун. Чугун, в котором весь углерод находится в свободном состоянии в виде графита, т. е. нет цементита, и структура ферритно-графитная называют серым ферритным чугуном.

Графитизация и структура чугуна существенно зависят от химиче­ского состава и скорости охлаждения отливки.

Серые чугуны кроме железа и углерода содержат примеси крем­ния, марганца, серы и фосфора. Кремний способствует графитизации чугуна (содержание его в чугуне 0,5—4,5 %). Марганец препятствует графитизации, способствует, как говорят, отбеливанию чугуна (содер­жание 0,4—1,3'%). Серу считают вредной примесью, так как она спо­собствует отбеливанию чугуна, понижает прочностные характеристики и снижает жидкотекучесть (допускается < 0,12 %). Фосфор улучшает жидкотекучесть (при содержании до 0,8 %), но увеличивает хрупкость. Обычно для получения заданной структуры регулируют содержание углерода, кремния и марганца.

На структуру чугуна значительно влияет скорость охлаждения.
Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени
протекает процесс графитизации. Поэтому при одном и том же химическом составе чугуна структура получается различной в зависимости
от толщины отливки.

Механические свойства серого чугуна в основном определяются количеством, формой и размерами включений графита. Чем больше графита в чугуне, чем крупнее пластинки графита, тем ниже механи­ческие свойства. Для получения мелких, завихренной формы чешуек графита применяют модифицирование —добавление в жидкий чугун перед разливкой ферросилиция или силикокальция, играющих роль зародышевых центров выделения графита.

Серые чугуны маркируют буквами СЧ, затем ставят два двузнач­ных числа: первое число показывает предел прочности при растяже­нии, второе — предел прочности при изгибе. Например, марка СЧ 15-32 показывает, что, чугун имеет σв= 150 MПа (15 кгс/мм2) и σи = = 320 МПа (32 кгс/мм2).

Отливки из серого чугуна широко применяют в машиностроении: для станин металлорежущих станков, корпусов, поршневых колец, гильз автомобильных и тракторных двигателей и др.

Высокопрочные чугуны. Для получения графита в виде шаровид­ных включений в ковш с жидким чугуном вводят небольшое количество металлического магния.

Высокопрочные чугуны маркируют буквами ВЧ, затем ставят два числа: первое число показывает предел прочности при растяжении, второе —относительное удлинение; например, ВЧ 38-17; ВЧ 120-4 и др.

Чугуны с шаровидным графитом применяют для ответственных деталей, например коленчатых валов, кулачковых валиков и др.

Ковкий чугун. Этот чугун получают в результате длительного нагрева (отжига) доэвтектического белого чугуна, при котором проис­ходит распад цементита с образованием графита (хлопьевидной формы, рис.10,в). То есть процесс графитизации (такой отжим называют графитизирующим).

Ковкие чугуны маркируют буквами КЧ, далее следуют цифры предела прочности при растяжении и относительного удлинения; например, КЧ 35- 10, КЧ- 63-2.

«Углеродистые и легированные стали»

Сталью называют сплав железа с углеродом и другими элемен­тами с содержанием до 2- % С (точнее до 2,14 % С). Если сталь имеет в своем составе железо и углерод и некоторое количество постоянных примесей — марганец (до 0,7 %), кремний (до 0,4 %), серу (до 0,06 %), фосфор (до 0,07 %) и газы, то такую сталь называют углеродистой. Если в процессе выплавки углеродистой стали к ней добавляют легирую­щие элементы—хром, никель, ванадий и др., а также марганец и кремний в повышенном количестве, то такую сталь называют леги­рованной.

«Влияние на сталь углерода, постоянных примесей и легирующих элементов»

Углерод оказывает основное влияние на свойства стали. С увели­чением содержания углерода в стали повышается ее твердость и проч­ность, уменьшается пластичность и вязкость.

Марганец и кремний — полезные примеси. Их добавляют в сталь при выплавке ее для раскисления стали.

Сера с железом образует сульфид железа FeS, который в стали находится в виде эвтектики Fe—FeS с температурой плавления 985^°С. При нагреве стали до температуры 1000—1200 °С для горячей обра­ботки давлением эвтектика плавится, сталь становится хрупкой н при деформации разрушается. Это явление называют краснолом­костью. Красноломкость устраняет марганец. Образующийся пластич­ный сульфид марганца MnS плавится при температуре 1620 °С.

Фосфор растворяется в феррите, повышает хрупкость стали, т. е. вызывает так называемую хладноломкость.

Газы (кислород, азот, водород) частично растворены в стали, при­сутствуют в виде неметаллических включений (окислы, нитриды). Кислород в стали находится главным образом в виде окислов А1203, Si02 и др. Окислы, в отличие от сульфидов, хрупки, при горячей обработке не деформируются, а крошатся, разрыхляют металл. В при­сутствии большого количества водорода возникает опасный дефект — внутренние надрывы в металле, так называемые флокены.

Легирующие элементы оказывают различное влияние на аллотро­пические превращения в железе, фазовые пре­вращения в стали.

К элементам, способным образовывать карбиды, относятся Мn, Cr, W, V и др. Обозначают карбиды формулами, например Cr7C3, W2C, VC и др. Элементы, не образующие карбидов Ni, Si, находятся в стали главным образом в твердом растворе.

Легирующие элементы в различной степени положительно влияют на изменение механических свойств феррита.

Все легирую­щие элементы, за исключением кобальта, замедляют распад аусте­нита.

Увеличивая устойчивость аустенита, легирующие элементы умень­шают критическую скорость закалки и увеличивают прокаливаемость.

Карбидообразую­щие элементы (за исключением марганца) препятствуют росту зерна аустенита при нагреве.

 

«Классификация сталей»

Стали классифицируют по следующим при­знакам: химическому составу, качеству, структуре, применению.

По химическому составу различают стали углеродистые и легированные. В зависимости от содержания легирующих элементов легированные стали делят на: низколегированные (до 2,5%), среднелегированные (2,5—10%) и высоколегированные (более 10 %).

По качеству различают стали обыкновенного качества, качественные, высококачественные и особо высококачественные. При этом учитывается способ выплавки и содержание серы и фосфора.

По структуре различают стали в отожженном и нормализован­ном состояниях: в отожженном состоянии —доэвтектоидный (компонента меньше нормы), заэвтектоидный (компонента больше нормы), ледебуритный (одновременная кристаллизация аустенита и цементита), ферритный (тв.раст-р углерода в α-железе) и аустенитный (тв.раст-р углерода в γ-железе) классы; в нормализованном состоянии—перлитный (одновременная кристаллизация феррита и цементита), мартенситный (перенасыщенный твердый раствор углерода в α-железе). К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих эле­ментов, к мартенситному — с более высоким и к аустенитному — с высоким содержанием легирующих элементов.

По применению стали подразделяют на следующие группы: конструкционные стали—для деталей машин и конструкций; инстру­ментальные стали —для различного инструмента; стали и сплавы с особыми свойствами —например, жаропрочные, коррозионно-стой­кие, магнитные и др.

 

«Маркировка сталей»

Обозначение сталей обыкновенного качества — буквенно-цифровое, например Ст0, Ст1 —Ст6, БСт0, БСт1 —БСт6, ВСт2—ВСт5. Буквы Ст означают сталь (в марках других сталей буквы Ст не указываются), цифры от 0 до 6 —услов­ный номер марки в зависимости от химического состава и механи­ческих свойств; буквы Б и В —группы стали (группа А в марке стали не указывается). Степень раскисления — индексами: кп — кипящая, пс—полуспокойная, сп—спокойная, например Ст4кп, Ст4пс, Ст4сп, БСт3кп.

Углеродистые качественные конструкционные стали обозначают двузначными цифрами, показывающими среднее содержание угле­рода в стали, выраженное в сотых долях процента. Например, сталь марки 15 содержит в среднем 0,15 % С, сталь 40 —0,40 % С и т. д. Степень раскисления указывают в конце марки, например сталь 08кп.

Углеродистые инструментальные стали маркируют следующим образом: впереди ставят букву У, за ней цифру —среднее содержа­ние углерода, выраженное в десятых долях процента. Например, сталь марки У9 содержит в среднем 0,9 % С, сталь У11 — 1,1 % С.

В основу обозначения марок легированных сталей положена буквенно-цифровая система. Легирующие элементы указывают русскими буквами: марганец —Г, кремний —С, хром — X, никель —Н, Вольфрам — В, ванадий —Ф, титан —Т, молибден —М, кобальт—К, алюминий — Ю, медь—Д, бор — Р, ниобий—Б, цирконий—Ц, фосфор —П, азот —А.

В марках легированных конструкционных сталей, например 20Х, 18Г2С, 60С2, 18ХГТ, 38ХН3МФ и др., двузначные цифры в на­чале марки —это среднее содержание углерода в сотых долях про­цента, а цифры после букв — примерное содержание соответствую­щего легирующего элемента в целых процентах; отсутствие цифры указывает на то, что оно составляет до 1,5 % и менее. Для высоко­качественных сталей в конце марки ставят букву А; например, сталь 12Х2Н4 — качественная сталь, а сталь 12Х2Н4А —высококачествен­ная.

В марках легированных инструментальных сталей, например X, 9ХС, ХВГ, ЗХ2В8Ф, 5ХЗВЗМФС и др., одна цифра в начале марки указывает среднее содержание углерода в десятых долях процента, если его содержание менее 1 %. При содержании в сталях 1 % С или более цифру не пишут. Расшифровка в марках инструменталь­ных сталей содержания легирующих элементов такая же, как и в кон­струкционных сталях. Все стали инструментальные легированные и с особыми свойствами всегда высококачественные и поэтому в обо­значениях этих сталей буква А не ставится. В маркировке сталей в начале иногда ставят буквы, указывающие их применение: А — автоматные стали, Р — быстрорежущие, Ш—шарикоподшипнико­вые, Э —электротехнические.

 

«Конструкционные стали»

Конструкционные стали должны обладать определенным комплексом механических свойств, которые в наибольшей степени определяют работоспособность, т. е. стойкость и надежность деталей и конструкций, которые называют конструк­тивной прочностью. Повышения конструктивной прочности можно достичь только в совокупности металлургических, технологических и конструкторских мероприятий.

Конструкционные строительные стали. Для сварных и клепаных конструкций в строительстве, мостостроении, судостроении применяют углеродистые стали обыкновенного качества (при незначительных напряжениях в конструкциях) и низколегированные стали с невы­соким содержанием углерода (при более высоких напряжениях).

Листовая сталь для холодной штамповки. В зависимости от степени деформации листа сталь делят на следующие группы: весьма глубо­кой вытяжки (ВГ), глубокой вытяжки (Г), нормальной вытяжки (Н). Для холодной штамповки применяют, например, сталь марки 08кп. В этой стали мало углерода (0,08 %) и кремния (==с 0,03 %), что является положительным, так как углерод и кремний снижают спо­собность стали к вытяжке. Штампуемость листовой стали ухудшается при наличии в ней крупного и неоднородного по размерам зерна.

Цементуемые (низкоуглеродистые) стали. Для изготовления де­талей небольших размеров, работающих на износ при малых нагруз­ках, когда прочность сердцевины не влияет на эксплуатационные свойства (втулки, валики, шпильки и др.), применяют углеродистые стали марок 15, 20. После цементации, закалки в воде и низкого отпуска поверхность стали имеет высокую твердость, а сердцевина не упрочняется.

Для тяжело нагруженных деталей, в которых необходимо иметь высокую твердость поверхностного слоя и достаточно прочную сердцевины, применяют легированные стали 20Х, 12Х2Н4А, 18ХГТ (зубчатые колеса, оси, поршневые пальцы)

Улучшаемые (среднеуглеродистые) стали. Эти стали называют улучшаемыми потому, что их обычно подвергают улучшению — за­калке в масле и высокому отпуску (550—650 °С) с получением струк­туры сорбита. Улучшаемые стали должны иметь высокую прочность, пластичность, высокий предел выносливости, хорошую прокаливаемость.

Пружинно-рессорные стали. Эти стали должны иметь особые свой­ства в связи с условиями работы пружин и рессор, которые служат для смягчения толчков и ударов, действующих на конструкции в про­цессе работы, и поэтому основным требованием, предъявляемым к пружинно-рессорным сталям, являются высокий предел упругости и выносливости.

Шарикоподшипниковые стали. Основной сталью является сталь ШХ15 (0,95 — 1,05 % С; 1,3 — 1,65 % Сг). Содержа­ние в ней углерода и хрома обеспечивает получение после закалки в масле высокой твердости, износостойкости, достаточной вязкости и необходимой прокаливаемости.

Автоматные стали. Эти стали содержат повышенное количество серы и фосфора, хорошо обрабатываются на металлорежущих станках, образуя короткую, ломкую стружку. Недостаток автоматных сталей—пониженная пластичность, поэтому их применяют для изготовления малоответственных деталей, от которых не требуется высоких механических свойств (крепежные детали, втулки и др.).

«Инструментальные стали»

В связи с различными условиями работы инструмента инструментальные стали по назначению делят на следующие группы: стали для режущих инструментов, измерительных инструментов, штамповые стали.

«Стали и сплавы с особыми свойствами»

1) Жаростойкие и жаропрочные стали и сплавы. При высокой температуре в условиях эксплуатации в среде нагретого воздуха в продуктах сгорания топлива происходит окисление стали (газовая коррозия). На поверхности сначала образуется тонкая пленка окислов, которая с течением времени увеличивается, и образуется окалина. Способность стали сопротивляться окислению при высоких температурах называется жаростойкостью (окалиностойкостью). Если окисная пленка пористая, окисление происходит интенсивно; если плотная, окисление замедляется или даже прекращается. Для получения плотной пленки сталь легируют хромом, кремнием и алюминием.

К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течении определенного времени и обладающие при этом достаточной жаростойкостью (детали котлов и турбин)

2) Коррозийно-стойкие (нержавеющие) стали.

3) Магнитные стали и сплавы. Делятся на магнитно – мягкие и магнитно – твердые. Магнитно – мягкие стали (электротехническое железо и сталь, железоникелевые сплавы) применяют для сердечников, полюсных наконечников электромагнитов. Магнотно – твердые стали (высокоуглероистые и легированные стали) применяют для изготовления постоянных магнитов.

 

Date: 2016-05-25; view: 2675; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию