Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Розсіювання α -частинки в атомі Томсона (а) і в атомі Резерфорда (б)

Перший закон фотоефекту.

Сила фотоструму насичення прямопропорційна падаючому на електрод світловому потоку.

Ін Ф

Щоб струм не протікав, потрібно прикласти затримуючу (гальмуючу) напругу, за якою можна визначити кінетичну енергію фотоелектронів.

еUз =

Змінюючи частоту подаючого світла, Столєтов визначив кінетичну енергію фотоелектронів і встановив другий закон:

Максимальна кінетична енергія фотоелектронів лінійно зростає з частотою світла і не залежить від його інтенсивності.

Найменша частота хвилі, при якій ще можливий фотоефект, наз. червоною межею фотоефекту. Або:

Найбільша довжина хвилі, при якій ще можна спостерігати фотоефект, наз. червоною межею фотоефекту.

Третій з-н фотоефекту:

Поріг фотоефекту (червона межа) визначається тільки матеріалом електрода і не залежить від інтенсивності випромінювання.

3. Явище фотоефекту і його закони пояснюється квантовою теорією.

Енергія кварта, яка починається тілом, йде н роботу щодо виривання електрона (А6) і надання йому кінетичної енергії (Ек)

Е=А6+Ек

h λ=Ав + - р-ня Ейнштейна

Для кожної речовини існує найменша частота λmin, при якій ще можливий фотоефект V=0,

λ min = А – умова фотоефекту.

λ Λmin = - червона межа фотоефекту

h = 0,63. 10-34 Дж.с.

5. Генерація вільних носіїв зарядів у напівпровіднику, яка відбувається внаслідок опромінення напівпровідника, наз. внутрішнім фотоефектом.

При зовнішньому фотоефекті ел-ни вириваються з речовини, а при внутрішньому залишаються всередині неї.

У деяких н/п внутр.фотоефект створється інфрачервоними променями, що має важливе значення для практики. Додаткова провідність н/п, зумовлена опроміненням, наз.фотопровідністю.

Внутрішній фотоефект використано в будові фото опорів і фотоелементів.

1 е В = 1,6.10-19 Дж

h = 4,1.10-15 еВ.С

2 Фотони. Рівняння Енштейна для фотоефекту

Фото́н (від дав.-гр. φῶς, род. відм. φωτός, «світло») — квант електромагнітного випромінювання (у вузькому сенсі — світла),елементарна частинка, що є носієм електромагнітної взаємодії.

Це безмасова частинка, яка здатна існувати у вакуумі тільки рухаючись зі швидкістю світла. Електричний заряд фотона такождорівнює нулю. Фотон може перебувати лише у двох спінових станах з проекцією спіна на напрямок руху (спіральністю) ±1. У фізиці фотони позначаються літерою γ.

Класична електродинаміка описує фотон як електромагнітну хвилю з круговою правою чи лівою поляризацією. З точки зорукласичної квантової механіки, фотону як квантовій частинці властивий корпускулярно-хвильовий дуалізм, він проявляє одночасно властивості частинки і хвилі. Квантова електродинаміка, яка базується на квантовій теорії поля і Стандартній моделі, описує фотон як калібрувальний бозон, який забезпечує електромагнітну взаємодію: віртуальні фотони є квантами-носіями електромагнітного поля і забезпечують взаємодію між двома електричними чи магнітними зарядами.[4][5] Їм приписується спін 1.

Фотони є істинно нейтральними частинками, і не мають античастинок. Фотон сам є власною античастинкою

. (1)

Вираз (1) називають рівнянням Ейнштейна для фотоефекту. Він пояснює основні закономірності фотоефекту. Енергія кванта має бути більшою ніж A вих (.).

 

3 Ефект Комптона

Ефект Комптона

Корпускулярні властивості світла особливо чітко проявляються в явищі розсіювання рентгенівських променів. У 1923 році А. Комптон, досліджуючи розсіяння монохроматичних рентгенівських променів речовинами з легкими атомами (парафін, бор), виявив, що у складі розсіяного випромінювання поряд з випромінюванням початкової довжини хвилі λ спостерігається також випромінювання більшої довжини хвилі λ'. Довжина хвилі λ' розсіяного випромінювання більша за довжину хвилі λ падаючого випромінювання, причому різниця Δλ= λ' -λ не залежить від довжини хвилі λ падаючого випромінювання і природи розсіювальної речовини, а визначається лише величиною кута розсіювання.

маса спокою електрона.

4 Тиск світла

Тиск світла

Тиск світла,тиск, вироблюваний світлом на тіла, що відображають або поглинаючі. Д. с. вперше було експериментальне відкрито і виміряно П. Н. Лебедевим (1899). Величина Д. с. навіть для найсильніших джерел світла (Сонце, електрична дуга) нікчемно мала і маскується в земних умовах побічними явищами (конвекційними струмами, радіометричними силами, див.(дивися) Радіометричний ефект), які можуть перевищувати в тисячі разів величину Д. с. Для виявлення Д. с. Лебедев виготовив спеціальні прилади і виконав досліди, що представляють чудовий приклад мистецтва експерименту. Основною частиною приладу Лебедева служили плоскі легкі крильця (діаметром 5 мм) з різних металів (платина, алюміній, нікель) і слюди (мал. 1). Крильця підвішувалися на тонкій скляній нитці і поміщалися усередині скляної судини G (мал. 2), з якої викачувалося повітря. На крильця за допомогою спеціальної оптичної системи і дзеркал прямувало світло від сильної електричної дуги Ст Переміщення дзеркал S 1 , S 4 давало можливість змінювати напрям падіння світла на крильця. Пристрій приладу і методика виміру дозволили звести до мінімуму що заважають радіометричні сили і виявити Д. с. на крильця, що відображають або поглинаючі, які під його дією відхилялися і закручували нитку. У 1907—10 Лебедев досліджував Д. с. на гази, що було ще важче, оскільки Д. с. на гази в сотні разів менше, ніж на тверді тіла. Результати експериментів Лебедева і пізніших дослідників повністю узгоджуються із значенням Д. с., визначеним на основі електромагнітної теорії світла (Дж. До. Максвелл, 1873), що з'явилося ще одним важливим підтвердженням теорії електромагнітного поля Фарадея — Максвелла. Згідно електромагнітної теорії світла, тиск, який надає на поверхню тіла плоска електромагнітна хвиля, падаюча перпендикулярно до поверхні, дорівнює щільності і електромагнітній енергії (енергії, увязненій в одиниці об'єму) біля поверхні. Ця енергія складається з енергії падаючих і енергії відбитих від тіла хвиль. Якщо потужність електромагнітної хвилі, падаючої на 1 см 2 поверхні тіла, рівна S ерг/см 2 (сік), коефіцієнт віддзеркалення електромагнігной енергії від поверхні тіла рівний R, те поблизу поверхні щільність енергії u = S• (1+r) /c (з — швидкість світла). Цій величині і рівне Д. с. на поверхню тіла: р = S (1 + R) (ерг/см 3 або дж/м 3 ). Наприклад, потужність сонячного випромінювання, що приходить на Землю, рівна 1,4•10 6 ерг/ (см2 (сік) або 1,4•10 3 вт/м 2 , отже, для абсолютної поглинаючої поверхні (коли R = 0) р = 4,3 •10 -5 lдін/см 2 = 4,3•10 -6 н/м 2 . Загальний тиск сонячного випромінювання на Землю рівний 6•10 13 дінів (6•10 8 н), що в 10 13 раз менше сили тяжіння Сонця. Ізотропне рівноважне випромінювання також чинить тиск на систему (тіло), з якою воно знаходиться в термодинамічній рівновазі: р = u/3=1/3•st 4 , де s — постійна Стефана — Больцмана, Т — температура випромінювання. Існування Д. с. показує, що потік випромінювання володіє не лише енергією, але і імпульсом, а отже, і масою. З точки зору квантової теорії, Д. с. — результат передачі тілам імпульсу фотонів (квантів енергії електромагнітного поля) в процесах поглинання або віддзеркалення світла. Квантова теорія дає для Д. с. ті ж формули. Особливо важливу роль Д. с. грає в двох протилежних по масштабах областях явищ — в явищах астрономічних і явищах атомарних. У астрофізику Д. с. поряд з тиском газу забезпечує стабільність зірок, протидіючи силам гравітаційного стискування (при температурі ~ 10 7 градусів в надрах зірок Д. с. досягає десятків млн. атмосфер). Д. с. істотно для динаміки навколозоряного і міжзоряного газу; дією Д. с. пояснюються деякі форми кометних хвостів (див. Комети). Д. с. викликає обурення орбіт штучних супутників Землі (особливо легких супутників-балонів типа «Ехо-камера» з великою відзеркалювальною поверхнею). До атомарних ефектів Д. с. відноситься «світлова віддача», яку випробовує збуджений атом при випусканні фотона. ДО Д. с. близьке явище передачі гамма-квантами частини свого імпульсу електронам, на яких вони розсіваються (див. Комптон-ефект), або ядрам атомів кристала в процесах випромінювання і поглинання (див. Мессбауера ефект).

 

5 Досліди Резерфорда по розсіюванню α – частинок

Розсіювання α -частинки в атомі Томсона (а) і в атомі Резерфорда (б).

Таким чином, досліди Резерфорда і його співробітників привели до висновку, що в центрі атома знаходиться щільне позитивно заряджене ядро, діаметр якого не перевищує 10-14-10-15 м. Це ядро займає тільки 10-12 частина повного об'єму атома, але містить весь позитивний заряд і не менш 99,95 % його маси.
Речовин, що складають ядро атома, слід було приписати колосальну щільність порядку з ≈ 1015 г/см3. Заряд ядра повинен бути дорівнює сумарному заряду всіх електронів, що входять до складу атома. Згодом вдалося встановити, що якщо заряд електрона прийняти за одиницю, то заряд ядра в точності дорівнює номеру даного елементу в таблиці Менделєєва.

 

6 Атом водню та його спектр з теорією Бора

Спектральні лінії, що відрізняються різними значеннями k, утворюють серію ліній, яка називається серією Бальмера. В спектрі випромінювання водню виявлено 37 ліній серії Бальмера. Із збільшенням k лінії серії зближуються, а значення визначає границю серії, до якої з боку більших частот прилягає суцільний спектр: . Крім того, виявляється, що зі збільшенням номера лінії її інтенсивність зменшується.

На початку ХХ ст. в спектрі водню було виявлено ще декілька серій ліній, які знаходяться у невидимій області випромінювання.

В ультрафіолетовій області – серія Лаймана:

, ;

в інфрачервоній області – серія Пашена:

, ;

серія Брекета:

, ; (1.3)

серія Пфунда:

, ;

серія Хемфрі:

, .

Всі серії у спектрі водню можуть бути описані однією формулою, яка називається узагальненою формулою Бальмера

(1.4)

де n=1, 2, 3,… і визначає серію, а k=n+1, n+2, n+3,… – визначає окремі лінії серії.

Наведені серіальні формули підібрані емпірично і довгий час не мали теоретичного обґрунтування.

Перша спроба побудови якісно нової теорії атома була зроблена в 1913 р. Н.Бором. Він поставив перед собою мету зв’язати в єдине ціле емпіричні закономірності лінійчатих спектрів, ядерну модель атома Резерфорда і квантовий характер випромінювання та поглинання світла.

Теорія Бора застосовна до атома водню і водневоподібних атомів, які складаються з ядра з зарядом і одного електрона, що обертається навколо ядра: , ,….

В основу своєї теорії Бор поклав три постулати.

Перший постулат Бора (постулат стаціонарних станів): існують деякі стаціонарні стани атома з відповідними значеннями енергії перебуваючи в яких, він не випромінює і не поглинає енергії.

Цим стаціонарним станам відповідають цілком визначені (стаціонарні) орбіти, по яких рухаються електрони, які, нез­важаючи на наявність у них прискорення, електромагнітних хвиль не випромінюють.

Другий постулат Бора (правило квантування орбіт): в стаціонарному стані атома електрон, рухаючись по коловій орбіті, повинен мати квантові значення моменту імпульсу, які задовольняють умову

, , , (1.5)

де m – маса електрона, – його швидкість, – радіус орбіти електрона.

Третій постулат Бора (правило частот): при переході атома з одного стаціонарного стану в інший випромінюється або поглинається один фотон з енергією , яка дорівнює різниці енергій відповідних стаціонарних станів.

Випромінювання фотона відбувається при переході атома зі стану з більшою енергією у стан з меншою енергією , тобто при переході електрона з орбіти більш віддаленої від ядра на ближчу до ядра орбіту. Поглинання енергії супроводжується переходом атома в стан з більшою енергією, і електрон переходить на віддаленішу від ядра орбіту. Набір можливих частот квантових переходів і визначає лінійчатий спектр атома.

 

 


Радикальні висновки про будову атома, що слідували з дослідів Резерфорда, змушували багатьох вчених сумніватися в їх справедливості. Не виключенням був і сам Резерфорд, який опублікував результати своїх досліджень тільки через два роки (у 1911 р.) Після виконання перших експериментів.
Спираючись на класичні уявлення про рух мікрочастинок, Резерфорд запропонував планетарну модель атома. Відповідно до цієї моделі, в центрі атома розташовується позитивно заряджене ядро, в якому зосереджена майже вся маса атома.
Атом в цілому нейтральний. Навколо ядра, подібно до планет, обертаються під дією кулонівських сил з боку ядра електрони.
Перебувати в стані спокою електрони не можуть, так як вони впали б на ядро.

 

7 Суцільний рентгенівський спектр та його короткохвильова межа

Рентгенівське випромінювання

Рентгенівське випромінювання було відкрите у 1895 р. видатним німецьким вченим В. Рентгеном (1845-1923), яке він назвав λ-променями. Пізніше воно було названо на його честь. Якщо основні властивості рентгенівського випромінювання були вивчені в досить короткий час після їх відкриття, то їх природа довгий час залишалась нез'ясованою.

1.1 Природа та одержання рентгенівського випромінювання

В 1912 р. М. Лауе одержав дифракцію рентгенівського випромінювання на монокристалах, що довело їх хвильову природу. Оскільки воно сильно іонізує повітря, не зазнає відхилення в електричному і магнітному полях, викликає почорніння фотоемульсій, то було зроблено висновок про його електромагнітну природу.

У 1907 р. В. Він (1864-1928), вимірюючи енергію фотоелектронів, які звільнялися під дією рентгенівського випромінювання, визначив довжину його хвилі. Було встановлено, що довжина хвилі '= 7*10 -5 мкм. Таким чином було доведено, що рентгенівське випромінювання має ту саму природу, що й світло, і відрізняється від нього лише досить малими довжинами хвиль. Рентгенівські хвилі охоплюють широкий інтервал довжин: від 0,01 до 10-8 мкм.

Джерелами рентгенівського випромінювання є рентгенівські трубки, які в простіших випадках являють собою двоелектродні вакуумні прилади різних конструкцій і розмірів. На рис. 1.1 наведена схема рентгенівської трубки. У скляну трубку введено електроди: К (катод) і А (анод). Катод розжарення є джерелом електронів. Між катодом і анодом підтримується різниця потенціалів U в десятки і сотні кіловольтів. Електрони, які набули високих енергій у прискорювальному електричному полі, бомбардують анод А, площина якого утворює з напрямом руху електронів кут 45°. Внаслідок цього рентгенівське випромінювання, що виникає при гальмуванні електронів анодом, виходить із трубки через отвір захисного свинцевого екрану. Оскільки напруга на трубці досить висока, то вона завжди працює в режимі струму насичення. Щоб змінити інтенсивність рентгенівського випромінювання, змінюють струм розжарення катода. Коефіцієнт корисної дії рентгенівських трубок близько 1 %, тобто 99 % кінетичної енергії електронів перетворюється в тепло. За принципом одержання електронних пучків рентгенівські трубки поділяють на три типи: іонні, електронні та індукційні. Джерелами рентгенівського випромінювання можуть бути природні та штучні радіоактивні елементи, а також ряд небесних тіл. Так, сонячна корона дає потужне рентгенівське випромінювання в інтервалі хвиль 10 3-10-2 мкм, а Місяць під впливом потоку протонів(особливо в роки активного Сонця) дає інтенсивне рентгенівське випромінювання.

 

1.2 Гальмівне та характеристичне рентгенівське випромінювання та його спектри

Дослідження показали, що за порівняно низьких напруг рентгенівське випромінювання утворює суцільний спектр. Електрони, що вилітають з катода, під дією зовнішнього електричного поля набувають високих енергій і при досягненні анода гальмуються, внаслідок чого виникає рентгенівське випромінювання. Суцільний спектр рентгенівського випромінювання пояснюється гальмуванням електронів у момент досягнення ними анода. Таке випромінювання називають гальмівним. На рис. 1.2 показано експериментальні криві розподілу інтенсивності рентгенівського випромінювання за довжинами хвиль. Криві одержали за допомогою трубок, які працюють при однакових напругах з різними матеріалами анода (вольфрам, молібден, хром). Характерною особливістю суцільних рентгенівських спектрів є наявність чіткої короткохвильової межі λтіп та її незалежність від речовини анода. Із підвищенням напруги інтенсивність випромінювання збільшується, а короткохвильова межа зміщується в бік коротких хвиль. Між прискорювальною напругою U і частотою γmах існує лінійна залежність (рис. 1.3).

Виникнення суцільного рентгенівського спектра в класичній електродинаміці пояснюється гальмуванням електронів у полі кристалічної ґратки анода. Існування короткохвильової межі λтіn класична теорія пояснити не може.

На основі фотонної теорії кожний електрон при гальмуванні породжує один фотон. У разі повного переходу енергії електрона в енергію випромінювання виникає фотон із максимальним значенням енергії, тобто

mах min (1.1)

Рис. 1.3

При зіткненнях електронів з анодом частина енергії витрачається переважно на нагрівання анода. У цьому разі народжуються фотони з частотами γ<γmах. Оскільки зіткнення електронів з атомами анода мають випадковий характер, то розподіл енергії електронів на теплоту та випромінювання буде довільним і гальмівне випромінювання має суцільний спектр. Крім цього, фотонна теорія пояснює незалежність короткохвильової межі λтіnmах) від речовини анода, а з виразу (1.1) безпосередньо випливає лінійна залежність γ'mах від U (рис. 1.3). Короткохвильова межа суцільного спектра чітко виражена, і відповідна їй довжина хвилі λтіn може бути знайдена з великою точністю, тому експериментальне визначення сталої Планка h з рентгенівського спектра є одним із найточніших методів.

У випадку підвищення напруги на рентгенівській трубці до величини, більшої за деяке критичне значення, що залежить від речовини анода, на фоні суцільного спектра виникають лінійчасті, інтенсивність яких у тисячі разів перевищує інтенсивність суцільного спектра. Оскільки лінійчастий рентгенівський спектр визначається природою речовини, з якої виготовлено анод, то його називають характеристичним. З рис. 1.2 видно, що для напруги, при якій рентгенівська трубка з анодом із вольфраму і хрому випромінює суцільний спектр, трубка з молібденовим анодом, крім суцільного, випромінює ще лінійчастий спектр. Виникнення характеристичного рентгенівського випромінювання фотонна теорія пояснює вибиванням електронів із внутрішніх електронних шарів атомів анода швидкими електронами або фотонами високих енергій. Перехід електронів з вищих шарів на шар, з якого вибито електрон, супроводжується випромінюванням рентгенівського кванта. Існування характеристичного випромінювання підтверджує наявність дискретних рівнів енергії атомів.

 

2. Рентгенівські спектри атомів

Після виявлення рентгенівських променів, було викликало інтерес у багатьох дослідників. Важливий крок вперед зробив англієць Чарлз Баркла, що довів експериментально, що рентгенівське випромінювання це електромагнітні хвилі, довжина яких менша, ніж у видимого світла і ультрафіолетових променів.

Рентген досліджував так зване гальмівне рентгенівське випромінювання. Воно виникає в катодній трубці при зіткненні електронів з анодом і має безперервний спектр (широкий діапазон довжин хвиль). Але Баркла виявив, що якщо впливати на атоми елементу рентгенівськими променями, то атоми самі починають випускати такі ж промені певних довжин хвиль. Кожному елементу властивий свій, індивідуальний спектр характеристичного рентгенівського випромінювання, подібний до оптичних лінійчатих спектрів, але розташований в іншому діапазоні довжин хвиль.

Цим спектрам також дала пояснення квантова теорія. Якщо рентгенівський фотон вибиває за межі атома електрон з якого-небудь з нижніх електронних шарів, то один з електронів, що знаходиться у вищих шарах (що має велику енергію), перескакує на місце, що звільнилося, і відповідно до постулатів Бору випускає новий фотон з довжиною хвилі рентгенівського діапазону, - це і є характеристичне рентгенівське випромінювання. Від того, який саме з електронів впаде на місце вибитого, залежить довжина хвилі фотона; тому видалення одного і того ж електрона наводить до появи цілої спектральної серії характеристичного випромінювання.

Окрім гальмівного і характеристичного існує ще один різновид рентгенівського випромінювання. Якщо пучок дуже швидких електронів потрапляє в сильне магнітне поле, траєкторії часток круто завертаються. В той же час, як і при будь-якому русі зарядів, з'являється синхротронне електромагнітне випромінювання (вперше його спостерігали в синхротроні - одному з типів прискорювачів заряджених часток). Довжини хвиль синхротронного випромінювання можуть бути різними залежно від напруженості магнітного поля. Нерідко вони знаходяться в межах рентгенівського діапазону, але ближче до ультрафіолетового. Таке випромінювання називається м'яким рентгенівським.

 

3. Поглинання та розсіяння рентгенівського випромінювання

Рентгенівське випромінювання має велику проникну здатність. При взаємодії рентгенівських фотонів з електронами атомів речовини енергія випромінювання витрачається на такі процеси утворення: когерентного випромінювання, при якому довжина хвилі та енергія розсіяного фотона не змінюються, а змінюється тільки напрям імпульсу; некогерентного випромінювання, при якому змінюються напрям і величина імпульсу фотона та його енергія (комптонівське розсіяння); фотоелектронів, які мають певні значення кінетичної енергії, та іонізованих атомів (внутрішній фотоефект); двічі іонізованих атомів та на ін. Внаслідок цього інтенсивність рентгенівського випромінювання при проходженні крізь речовини зменшується, тобто воно поглинається. Поглинання рентгенівського випромінювання в загальному випадку зумовлене справжнім поглинанням та розсіянням і відбувається за експоненціальним законом

kd (1.2)

де - початкова інтенсивність рентгенівського випромінювання; - інтенсивність випромінювання, що проходить шар речовини завтовшки d; k - коефіцієнт поглинання. Оскільки поглинання випромінювання зумовлене справжнім поглинанням і розсіянням, то коефіцієнт поглинання можна записати як суму двох коефіцієнтів

п + р (1.3)

де п і р - відповідно коефіцієнти справжнього поглинання і розсіяння. Дослідним шляхом встановлено, що коефіцієнт справжнього поглинання залежить від густини речовини, атомного номера 7. в періодичній системі елементів Менделєєва, атомної маси та довжини хвилі, тобто

п 𝝀3 (1.4)

Це означає, що атоми хімічних елементів, які знаходяться в кінці періодичної системи елементів і утворюють речовини великої густини, повинні інтенсивно поглинати рентгенівське випромінювання. Прикладом такої речовини є свинець. Коефіцієнти п і р, а отже, і пропорційні масі речовини. У зв'язку з цим зручніше користуватися масовими коефіцієнтами, тобто відношеннями п/ ρ, р/ ρ, / ρ, де ρ - густина речовини. Тоді вираз (1.2) запишеться так:

(1.5)

Для теоретичних розрахунків зручніше користуватись атомними коефіцієнтами, які одержують як добуток масових коефіцієнтів на абсолютну масу атома, тобто на відношення кілограм-атома даного елемента А до числа Авогадро

; . ; ; (1.6)

Характерною особливістю поглинання рентгенівського випромінювання є те, що воно є суто атомним, і молекулярний коефіцієнт поглинання дорівнює сумі атомних коефіцієнтів елементів, що входять до складу молекул.

Розсіяння рентгенівського випромінювання виявляє закономірності, які значно відрізняються від розсіяння світлових хвиль видимої частини спектра. Якщо у видимій частині спектра розсіяння обернено пропорційне четвертому степеню довжини хвилі, то розсіяння рентгенівського випромінювання не залежить від довжини хвилі.

 

8 Лінійчатий рентгенівський спектр. Закон Мозлі

Рентге́нівське випромі́нювання, пулюївське випромінювання або Х-промені (англ. X-ray emission, roentgen radiation, нім. Röntgenstrahlung f) — короткохвильове електромагнітне випромінювання з довжиною хвилі від 10 нм до 0.01 нм. Велектромагнітному спектрі діапазон частот рентгенівського випромінювання лежить між ультрафіолетом та гамма-променями[1].

Рентгенівське випромінювання виникає від різкого гальмування руху швидких електронів у речовині, при енергетичних переходах внутрішніх електронів атома. Воно використовується у науці, техніці, медицині. Рентгенівське випромінювання змінює деякі характеристики гірських порід, наприклад, підвищує їх електропровідність. Короткочасне опромінення кристалів кам'яної солізнижує їхнє внутрішнє тертя.

Назва рентгенівське випромінювання походить від прізвища німецького фізика Вільгельма Конрада Рентґена. Інша назва — пулюївське випромінювання походить від імені українського фізика Івана Пулюя.

Рентгенівське випромінювання використовуються для флюорографії, рентгенофлюоресцентного аналізу і в кристалографії для визначення атомної структури кристалів. Методи дослідження речовини за допомогою рентгенівських променів об'єднює термінрентгенівська спектроскопія.

Закон Мозлі — емпірично встановлена залежність частоти та довжини хвилі серій характеристичного рентгенівського випромінювання від атомного номера хімічного елемента.

Для лінії характеристичного випромінювання закон Мозлі має вигляд:

Для інших серій

,

де — деяке число, що описує екранування заряду ядра внутрішніми електронами.

Закон носить ім'я свого першовідкривача — англійського фізика Генрі Мозлі.

 

Корпускуля́рно-хвильови́й дуалі́зм — запропонована Луї де Бройлем гіпотеза про те, що будь-яка елементарна частка має хвильові властивості, а будь-яка хвиля має властивості, характерні для частинки.

Гіпотеза де Бройля з'явилася тоді, коли стало відомо, що електромагнітні хвилі випромінюються й поглинаються порціями —квантами (див. абсолютно чорне тіло, фотоефект). Тобто, хвилі демонструють властивості, які раніше приписувалися лише частинкам (корпускулам).

Де Бройль висловив гіпотезу, що справедливе обернене твердження: будь-яка елементарна частинка має також хвильові властивості. Він оцінив довжину хвилі частинки, виходячи з енергетичних міркувань. Якщо електромагнітна хвиля з частотою ν має енергію , де h — стала Планка, то схожим чином можна визначити також частоту (а отже, й довжину хвилі) інших частинок, наприклад, електронів.

Енергія частинки згідно з положеннями теорії відностності залежить від її маси. Тоді для визначення довжини хвилі де Бройля λ можна скористатися співвідношенням

.

Гіпотеза де Бройля знайшла підтвердження, коли в 1925 р. Ервін Шредінгер використав її для запису хвильового рівняння.

Експериментальне відкриття в 1927 р. явища дифракції електронів остаточно підтвердило справедливість коспускулярно-хвильового дуалізму.

9 Корпускулярно-хвильовий дуалізм. Гіпотеза Де-Бройля

Корпускуля́рно-хвильови́й дуалі́зм — запропонована Луї де Бройлем гіпотеза про те, що будь-яка елементарна частка має хвильові властивості, а будь-яка хвиля має властивості, характерні для частинки.

Гіпотеза де Бройля з'явилася тоді, коли стало відомо, що електромагнітні хвилі випромінюються й поглинаються порціями —квантами (див. абсолютно чорне тіло, фотоефект). Тобто, хвилі демонструють властивості, які раніше приписувалися лише частинкам (корпускулам).

Де Бройль висловив гіпотезу, що справедливе обернене твердження: будь-яка елементарна частинка має також хвильові властивості. Він оцінив довжину хвилі частинки, виходячи з енергетичних міркувань. Якщо електромагнітна хвиля з частотою ν має енергію , де h — стала Планка, то схожим чином можна визначити також частоту (а отже, й довжину хвилі) інших частинок, наприклад, електронів.

Енергія частинки згідно з положеннями теорії відностності залежить від її маси. Тоді для визначення довжини хвилі де Бройля λ можна скористатися співвідношенням

.

Гіпотеза де Бройля знайшла підтвердження, коли в 1925 р. Ервін Шредінгер використав її для запису хвильового рівняння.

Експериментальне відкриття в 1927 р. явища дифракції електронів остаточно підтвердило справедливість коспускулярно-хвильового дуалізму.

Фотон — частинка світла — має імпульс , де - довжина хвилі світла, якому відповідає цей фотон. Де Бройль припустив, що це співвідношення є універсальним, тобто руху частинок, що мають імпульс , відповідає довжина хвилі Ці хвилі одержали назву "хвилі де Бройля", або "хвилі матерії". Оскільки імпульс частинки дорівнює добутку її маси на швидкість руху (), то довжина хвилі де Бройля .

Дуже довго фізики не могли зрозуміти зміст гіпотези де Бройля. Сам автор уявляв хвилю - пілота, що на своєму горбу несе електрон; пройшло багато часу, поки звикли до думки, що хвиля де Бройля і є сам електрон.

10 Співвідношення невизначеностей Гейзенберга

У класичній механіці всяка частинка рухається вздовж певної траєкторії так, що фіксовані її координати та імпульс. Мікрочастинки внаслідок наявності в них хвильових властивостей відрізняються від класичних частинок. Одна з основних відмінностей полягає в тому, що мікрочастин­ка не має чіткої траєкторії, і неправомірно говорити одночасно про точні значення її координат та імпульсу.

Як відомо, будь–яка хвиля, незалежно від її природи, є процесом, що заповнює більшу чи меншу область простору, а через це не може локалізуватися в одній точці. Наприклад, уздовж осі ОХ рухається фотон, для якого точно відомий імпульс , тобто . Такому фотону відповідає хвиля, довжина якої однозначно визначається величиною імпульсу .

Така монохроматична хвиля в просторі нічим не обмежена, область її існування – вся вісь ОХ. Це означає, що в цьому випадку просторовий інтервал , в якому замкнено об’єкт з хвильовими властивостями – фотон, дорівнює нескінченності. Іншими словами, при маємо . Отже, якщо точно відомий імпульс, локалізація фотона стає цілком невизначеною.

Якщо ж область локалізації фотона є обмеженою, то це означає, що амплітуда відповідного хвильового процесу відрізняється від нуля тільки всередині скінченого інтервалу і дорівнює нулю поза ним. Такий хвильовий процес уже не можна зобразити монохроматичною хвилею. Його можна уявити як суперпозицію ряду монохроматичних хвиль різної довжини. На рис. 4.3 наведено простий приклад суперпозиції трьох синусоїдальних хвиль, внаслідок чого виникає хвильовий процес – так званий хвильовий пакет, амплітуда якого відрізняється від нуля в скінченому інтервалі .

Оскільки в хвильовому пакеті є набір значень , які містяться в деякому інтервалі , то набір значень імпульсів P знаходиться в інтервалі

. (1.8)

Чим ширший інтервал можливих значень інтерферуючих хвиль, а разом з тим інтервал можливих значень імпульсів, тим вужча область локалізації результуючого пакета. Інакше кажучи, чим більша невизначеність імпульсу фотона, тим точніше можна визначити його координати. При маємо ,тобто точне значення координат фотона можливе тільки при повній невизначеності його імпульсу.

Такі висновки справедливі не тільки для фотонів, а й для електронів, протонів та інших мікрочастинок.

У 1927 р. В. Гейзенберг, враховуючи хвильові властивості мікрочастинок, дійшов до висновку, що об’єкт мікросвіту не­можливо одночасно з однаковим ступенем точності характеризувати і координатами, й імпульсом.

Згідно з співвідношенням невизначеностей Гейзенберга мікрочастинка не може одночасно мати і певні координати і певні відповідні проекції імпульсу , причому невизначеності в значеннях цих всіх величин задовольняють умови

, , , (1.9)

тобто добуток невизначеностей координати і відповідної їй проекції імпульсу не може бути меншим від величини .

Співвідношення невизначеностей випливає з хвильових властивостей мікрочастинок. Нехай потік фотонів проходить через вузьку щілину завширшки , яка розміщена перпендикулярно напрямку їх руху (рис. 1.4) і при їх проходженні через щілину відбувається дифракція, яка спостерігається на екрані E.

 

До проходження через щілину фотони рухалися вздовж осі OY, тому складова їх імпульсу є точно визначена, відповідно складова та імпульсу фотонів. В той самий час координата x фотонів є цілком невизначеною. В момент проходження фотонів через щілину їх положення в напрямку осі ОX визначається з точністю до ширини щілини, тобто з точністю . Внаслідок дифракції фотони відхиляються від початкового напрямку і починають рухатися в границях кута . Отже, появиться невизначеність в значенні складової імпульсу вздовж осі ОХ, яка дорівнює

. (1.10)

Звідки

(1.11)

З теорії дифракції відомо, що першому дифракційному мінімуму при дифракції світла на нескінченно довгій щілині відповідає куту дифракції, що задовольняє умову:

.

Або

. (1.12)

З (1.10) і (1.11) маємо

 

З останнього співвідношення отримуємо

. (1.13)

Якщо врахувати дифракційні максимуми вищих порядків, то

або . (1.14)

 

 


<== предыдущая | следующая ==>
Парфюмированная вода | А-1, Б-2, В-1, Г-2, Д-1Конец формы

Date: 2016-05-18; view: 633; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию