Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






О дивный браны мир





 

О том, живем ли мы на бране

или являем собой всего‑навсего голограммы

 

Как сложится в будущем наш поход за открытиями? Добьемся ли мы успеха в поисках полной единой теории, которая управляет Вселенной и всем, что в ней содержится? На самом деле, как говорилось в главе 2, мы, возможно, уже нашли Теорию Всего (ТВ) в лице М‑теории. Она не имеет единой формулировки, по крайней мере, мы ее не знаем. Вместо нее мы открыли сеть внешне различных математических структур, которые все кажутся приближениями в разных пределах к одной и той же лежащей в основе фундаментальной теории, подобно тому как всемирное тяготение Ньютона является приближением к общей теории относительности Эйнштейна в пределе слабого гравитационного поля. М‑теория похожа на пазл: проще всего найти и составить вместе фрагменты, лежащие по краям мозаики. Так и М‑теорию легче развивать в пределах, в которых те или иные параметры малы. На сегодня у нас есть замечательные идеи об этих краях, но в центре пазла остается зияющая дыра, происходящее в которой остается для нас неведомым (рис. 7.1). Фактически мы не сможем сказать, что нашли Теорию Всего, пока не заполним эту дыру.

 

Что же находится в центре М‑теории? Обнаружим ли мы там драконов (или что‑то не менее странное), как на старых картах неисследованных земель?

 

 

Прошлый опыт подсказывает, что каждый раз, когда наши наблюдения продвигаются в направлении меньших масштабов, мы обычно находим новые неожиданные явления. К началу ХХ века мы понимали функционирование природы в масштабах классической физики, которая хорошо работает от межзвездных расстояний до примерно сотой доли миллиметра. Классическая физика считала материю сплошной средой с такими свойствами, как упругость и вязкость, но стали появляться свидетельства того, что вещество не сплошное, а зернистое: оно состоит из строительных блоков, называемых атомами. Слово «атом» пришло из греческого языка и означает «неделимый», но вскоре обнаружилось, что атомы состоят из электронов, которые обращаются вокруг ядер, состоящих из протонов и нейтронов (рис. 7.2).

 

Рис. 7.2

 

Слева: Классический неделимый атом.

Справа: Атом с электронами, обращающимися вокруг ядра, которое состоит из протонов и нейтронов.

 

Исследования в области атомной физики в течение первых трех десятилетий прошлого века позволили нам продвинуться в понимании строения материи до расстояний порядка миллионной доли миллиметра. Затем мы открыли, что протоны и нейтроны состоят из еще меньших частиц, называемых кварками (рис. 7.3).

 

Протон состоит из двух u‑кварков, каждый из которых несет положительный заряд величиной две трети [22] и одного d‑кварка с отрицательным зарядом величиной в одну треть. Нейтрон состоит из двух d‑кварков, каждый из которых несет отрицательный заряд величиной в одну треть, и одного μ ‑кварка с положительным зарядом в две трети.

 

Наши недавние исследования в области ядерной физики и физики высоких энергий позволили добраться до масштабов, еще в миллиард раз меньших. Может сложиться впечатление, что так будет продолжаться вечно, что мы будем открывать новые структуры все меньшего и меньшего масштаба. Но у этой последовательности есть предел, как и у вложенных друг в друга матрешек (рис. 7.4).

 

 

Рис. 7.4

 

Каждая матрешка отвечает теоретическому пониманию природы до определенного масштаба. В каждой из них содержится кукла меньшего размера, соответствующая теории, которая описывает природу на более коротких расстояниях. Но в физике существует самая маленькая фундаментальная длина – планковская – масштаб, в котором Вселенная, возможно, описывается М‑теорией.

 

В конце появляется самая маленькая матрешка, которую уже нельзя разъять. В физике ее называют планковской длиной. Чтобы исследовать меньшие размеры, понадобятся частицы со столь высокой энергией, что они будут находиться внутри черных дыр. Точное значение фундаментальной планковской длины в М‑теории нам неизвестно, но оно, по‑видимому, меньше, чем миллиметр, деленный на 100 тысяч миллиардов миллиардов миллиардов частей. Нам даже близко не подойти к созданию ускорителя, пригодного для изучения столь малых размеров. Его габариты превосходили бы Солнечную систему, и при нынешнем финансовом климате его сооружение вряд ли одобрят (рис. 7.5).

 

 

Рис 7.5

 

Размер ускорителя для изучения столь малых расстояний, как планковская длина, оказался бы больше диаметра Солнечной системы.

 

И все же есть одна поразительная новая разработка, с помощью которой открыть по крайней мере некоторых драконов М‑теории можно гораздо проще (и дешевле). Как говорилось в главах 2 и 3, в сети математических моделей М‑теории пространство‑время имеет 10 или 11 измерений. До недавнего времени считалось, что 6 или 7 лишних измерений должны быть свернуты до очень малых размеров. Это можно уподобить человеческому волосу (рис. 7.6).

 

 

Рис. 7.6

 

Для невооруженного глаза волос выглядит линией. Его единственным измерением кажется длина. Аналогично пространство‑время может выглядеть четырехмерным, но при зондировании высокоэнергетическими частицами оказаться 10‑ или 11‑мерным.

 

Разглядывая волос под лупой, вы заметите, что у него есть толщина, однако для невооруженного глаза он выглядит как линия, имеющая длину, но никаких других измерений. Подобным образом может обстоять дело с пространством‑временем: в человеческих, атомных и даже ядерных масштабах оно может выглядеть четырехмерным и почти плоским. Но если мы прозондируем его на очень коротких расстояниях с помощью частиц чрезвычайно высокой энергии, то увидим, что пространство‑время 10‑ или 11‑мерно.

Если все дополнительные измерения очень малы, их будет крайне трудно наблюдать. Однако недавно появилось предположение, что одно или несколько дополнительных измерений могут оказаться относительно большими или даже бесконечными. Эта идея имеет важное преимущество (по крайней мере, для таких позитивистов, как я), поскольку она допускает проверку на следующем поколении ускорителей элементарных частиц или путем высокоточных измерений гравитационных сил на коротких расстояниях. Такие наблюдения могут либо фальсифицировать теорию, либо экспериментально подтвердить наличие других измерений.

Большие дополнительные измерения – это захватывающая новая область исследований в наших поисках окончательной модели или теории. Они могли бы указать, что мы живем в 4‑бранном мире – на четырехмерной поверхности или бране в пространстве‑времени большей размерности.

Материя и негравитационные, например электрические, силы могут быть привязаны к бране. То есть все, что не имеет отношения к гравитации, происходит так же, как в четырех измерениях. В частности, сила электрического взаимодействия между ядром атома и обращающимися вокруг него электронами будет уменьшаться с расстоянием как раз с такой скоростью, чтобы электроны не падали на ядро и атомы были устойчивыми (рис. 7.7).

 

 

Рис. 7.7 Миры на бране

 

Электрическое взаимодействие должно быть привязано к бране и ослабевать со скоростью, обеспечивающей устойчивость орбит электронов вокруг атомного ядра.

 

Не будет противоречий и с антропным принципом, гласящим, что Вселенная должна быть пригодна для разумной жизни: если бы атомы были нестабильны, мы не могли бы наблюдать Вселенную и интересоваться, почему она четырехмерна.

С другой стороны, гравитация в форме искривленного пространства может пронизывать все многомерное пространство‑время. Это означало бы, что гравитация ведет себя иначе, чем остальные известные нам силы: распространяясь на дополнительные измерения, она должна ослабевать быстрее, чем мы ожидаем (рис. 7.8).

 

 

Рис. 7.8

 

Гравитация может распространяться в дополнительные измерения, так же как и вдоль браны, и в таком случае должна ослабевать с расстоянием быстрее, чем в четырех измерениях.

 

Если бы это более быстрое спадание силы тяготения продолжалось на астрономических расстояниях, то мы могли бы заметить его проявление на орбитах далеких планет. Фактически, как отмечалось в главе 3, они оказались бы нестабильными: планеты либо падали бы на Солнце, либо улетали в темное и холодное межзвездное пространство (рис. 7.9).

 

Рис 7.9

 

Более быстрое ослабление силы гравитации на больших расстояниях сделало бы орбиты планет нестабильными. Планеты либо упали бы на Солнце (а), либо вырвались из пут его притяжения (b).

 

Однако этого не происходит, если дополнительные размерности заканчиваются на другой бране, не слишком далеко от той, на которой живем мы. Тогда на расстояниях, превышающих то, которое разделяет браны, гравитация не сможет свободно распространяться, а окажется фактически привязана к бране, подобно электрическому взаимодействию, и в масштабах планетных орбит будет спадать с правильной скоростью (рис. 7.10).

 

 

Рис. 7.10

 

Вторая брана вблизи нашей могла бы препятствовать распространению гравитации далеко в дополнительные измерения, а значит, на расстояниях, превышающих интервал между бранами, гравитация ослабевала бы с такой же скоростью, как и в четырех измерениях.

 

С другой стороны, на расстояниях, меньших, чем расстояния между бранами, гравитация будет изменяться быстрее. Крайне малые гравитационные силы между тяжелыми предметами тщательно измерялись в лаборатории, но эксперименты пока не обнаруживают проявления бран, разделенных более чем несколькими миллиметрами. Сейчас проводятся новые измерения на еще более коротких расстояниях (рис. 7.11).

 

 

Рис. 7.11 Эксперимент Кавендиша

 

Лазерный луч е реагирует на любой поворот коромысла, смещаясь по специально откалиброванному экрану f. Две небольшие свинцовые сферы а, насаженные на коромысло b с маленьким зеркалом с, свободно подвешены на скручиваемом волокне.

Две большие свинцовые сферы g помещены рядом с небольшими (а) на крутящейся перекладине. Когда большие свинцовые сферы поворачивают в новое положение, коромысло начинает колебаться и постепенно занимает новое положение.

 

Если в таком мире бран мы жили бы на одной бране, то рядом имели бы другую – «теневую». Поскольку свет привязан к бранам и может распространяться в пространстве между ними, видеть теневой мир мы бы не могли, однако чувствовали бы гравитационное воздействие материи с теневой браны. На нашей бране такие гравитационные силы казались бы вызванными чем‑то поистине «темным», чье присутствие можно заметить только по его тяготению (рис. 7.12).

 

 

На самом деле для того, чтобы объяснить скорость обращения звезд вокруг центра нашей галактики, по‑видимому, надо считать, что там находится большая масса, чем та, которую можно связать с наблюдаемым там веществом.

 

Date: 2015-12-12; view: 290; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию