Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Связь S-параметров (параметров рассеяния) с входным сопротивлением нормализованного четырехполюсника





Применение матрицы рассеяния очень удобно для описания большого

класса пассивных и активных СВЧ элементов, и поэтому она широко использу-

ется. Во многих случаях матрица рассеяния позволяет полностью описать СВЧ

устройства без строгой формулировки электромагнитной задачи и определения

граничных условий.

Элементы матрицы рассеяния многополюсника представляют собой набор

величин, связывающих между собой падающие и отраженные волны у полюсов

многополюсника. Такая матрица описывает поведение СВЧ устройства при лю-

бых заданных значениях его нагрузки. Элементы, расположенные по главной

диагонали матрицы, представляют собой коэффициенты отражения, в то время

как элементы другой диагонали являются коэффициентами передачи. Для каж-

дой линейной и не изменяющейся во времени цепи может быть составлена мат-

рица рассеяния. Общие свойства многополюсной цепи определяются из рас-

смотрения таких характеристик цепи, как обратимость, симметрия и сохранение

мощности.

Для характеристики качества согласования сопротивления в передающих

трактах широко пользуются двумя понятиями: коэффициентом стоячей волны

напряжения. и коэффициентом отражения.

- волновая матрица рассеяния
37.Аппроксимация АЧХ нормированного прототипа ФНЧ Баттерворта. Основные свойства функции Баттерворта.

 

Фильтр Баттерво́рта — один из типов электронных фильтров. Фильтры этого класса отличаются от других методом проектирования. Фильтр Баттерворта проектируется так, чтобы его амплитудная частотная характеристика была максимально гладкой на частотах полосы пропускания.

Подобные фильтры были впервые описаны британским инженером Стефаном Баттервортом в статье «О теории фильтрующих усилителей» (англ. On the Theory of Filter Amplifiers), в журнале Wireless Engineer в 1930 году.

Обзор

АЧХ фильтра Баттерворта максимально гладкая на частотах полосы пропускания и снижается практически до нуля на частотах полосы подавления. При отображении частотного отклика фильтра Баттерворта на логарифмической АФЧХ, амплитуда снижается к минус бесконечности на частотах полосы подавления. В случае фильтра первого порядка АЧХ затухает со скоростью −6 децибел на октаву (-20 децибел на декаду) (на самом деле все фильтры первого порядка независимо от типа идентичны и имеют одинаковый частотный отклик). Для фильтра Баттерворта второго порядка АЧХ затухает на −12 дБ на октаву, для фильтра третьего порядка — на −18 дБ и так далее. АЧХ фильтра Баттерворта — монотонно убывающая функция частоты. Фильтр Баттерворта — единственный из фильтров, сохраняющий форму АЧХ для более высоких порядков (за исключением более крутого спада характеристики на полосе подавления) тогда как многие другие разновидности фильтров (фильтр Бесселя, фильтр Чебышева, эллиптический фильтр) имеют различные формы АЧХ при различных порядках.

 

В сравнении с фильтрами Чебышева I и II типов или эллиптическим фильтром, фильтр Баттерворта имеет более пологий спад характеристики и поэтому должен иметь больший порядок (что более трудно в реализации) для того, чтобы обеспечить нужные характеристики на частотах полосы подавления. Однако фильтр Баттерворта имеет более линейную фазо-частотную характеристику на частотах полосы пропускания.

АЧХ для фильтров Баттерворта нижних частот порядка от 1 до 5. Наклон характерстики — 20n дБ/декаду, где n — порядок фильтра.

 

Как и для всех фильтров при рассмотрении частотных характеристик используют фильтр нижних частот, из которого легко можно получить фильтр высоких частот, а, включив несколько таких фильтров последовательно, — полосовой фильтр или режекторный фильтр.

 

Амплитудно-частотная характеристика фильтра Баттерворта n-го порядка может быть получена из передаточной функции :

где

— порядок фильтра

— частота среза (частота на которой амплитуда равна −3dB)

— коэффициент усиления по постоянной составляющей (усиление на нулевой частоте)

 

Легко заметить, что для бесконечных значений n АЧХ становится прямоугольной функцией, и частоты ниже частоты среза будут пропускаться с коэффициентом усиления , а частоты выше частоты среза будут полностью подавляться. Для конечных значений спад характеристики будет пологим.

С помощью формальной замены представим выражение в виде :

Полюсы передаточной функции расположены на круге радиуса равноудалённо друг от друга в левой полуплоскости. То есть передаточную функцию фильтра Баттерворта можно определить лишь определением полюсов его передаточной функции в левой полуплоскости s-плоскости. k-й полюс определяется из следующего выражения:

откуда

Передаточную функцию можно записать в виде:

Аналогичные рассуждения применимы и к цифровым фильтрам Баттерворта, с той лишь разницей, что соотношения записываются не для s-плоскости, а для z-плоскости.

Знаменатель этой передаточной функции называется полиномом Баттерворта.

Date: 2016-02-19; view: 2406; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию