Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 5. ПЕРЕМЕННЫЙ ТОК





 

§ 5.1. Переменный ток

Установившиеся вынужденные электромагнитные колебания можно рассматривать как протекание в цепи, содержащей резистор, катушку индуктивности и конденсатор, переменного тока. Если длина волны тока λ в цепи много больше длины цепи, то переменный ток можно считать квазистационарным, т. е. для него мгновенные значения силы тока во всех сечениях цепи практически одинаковы, таккак их изменения происходят достаточно медленно, а электромагнитные возмущения распространяются по цепи со скоростью, равной скорости света. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа, которые будут использованы применительно к переменным токам (эти законы уже использовались при рассмотрении электромагнитных колебаний).

Рассмотрим последовательно процессы, происходящие на участке цепи, содержащем резистор, катушку индуктивности и конденсатор, к концам которого приложено переменное напряжение

(5.1)

где U m амплитуда напряжения.

1. Переменный ток, текущий через резистор сопротивлением R (L ®0, C ®0) (рис. 5.2, а). При выполнении условия квазистационарности ток через резистор определяется законом Ома:

где амплитуда силы тока I m= U m /R.

Для наглядного изображения соотношений между переменными токами и напряжениями воспользуемся методом векторных диаграмм. На рис. 5.2, б дана векторная диаграмма амплитудных значений тока I m и напряжения U m на резисторе (сдвиг фаз между I m и U m равен нулю).

 

Рис. 5.2

2. Переменный ток, текущий через катушку индуктивностью L (R ®0, C ®0) (рис. 5.3, а). Если в цепи приложено переменное напряжение (5.1), то в ней потечет переменный ток, в результате чего возникнет э.д.с. самоиндукции . Тогда закон Ома для рассматриваемого участка цепи имеет вид

откуда

(5.2)

Таккак внешнее напряжение приложено к катушке индуктивности, то

(5.3)

есть падение напряжения на катушке. Из уравнения (5.2) следует, что

после интегрирования, учитывая, что постоянная интегрирования равна нулю (так как отсутствует постоянная составляющая тока), получим

(5.4)

где I m= U m/(wL). Величина

(5.5)

называется реактивным индуктивным сопротивлением (или индуктивным сопротивлени­ем). Из выражения (5.5) вытекает, что для постоянного тока (w = 0) катушка индук­тивности не имеет сопротивления. Подстановка значения U m =wLI m в выражение (5.2) с учетом (5.3) приводит к следующему значению падения напряжения на катушке индуктивности:

(5.6)

Сравнение выражений (5.4) и (5.6) приводит к выводу, что падение напряжения UL опережает по фазе ток I, текущий через катушку, на p /2, что и показано на векторной диаграмме (рис. 5.3, б).

Рис. 5.3

3. Переменный ток, текущий через конденсатор емкостью С (R ®0, L ®0) (рис. 5.4, а). Если переменное напряжение (5.1) приложено к конденсатору, то он все время перезаряжается, и в цепи течет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренеб­речь, то

Сила тока

(5.7)

где

Величина

называется реактивным емкостным сопротивлением (или емкостным сопротивлением). Для постоянного тока (w = 0) RС = ¥, т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе

(5.8)

Сравнение выражений (5.7) и (5.8) приводит к выводу, что падение напряжения UС отстает по фазе от текущего через конденсатор тока I на p /2. Это показано на векторной диаграмме (рис. 5.4, б).

4. Цепь переменного тока, содержащая последовательно включенные резистор, ка­тушку индуктивности и конденсатор. На рис. 5.5, а представлен участок цепи, содер­жащий резистор сопротивлением R, катушку индуктивностью L и конденсатор ем­костью С, к концам которого приложено переменное напряжение (5.1). В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и UC. На рис. 5.5, б представлена векторная диаграмма амплитуд падений напряжений на резисторе (UR), катушке (UL) и конденсаторе (UC). Амплитуда U m приложенного напряжения должна быть равна векторной сумме амп­литуд этих падений напряжений. Как видно из рис. 5.5, б, угол j определяет разность фаз между напряжением и силой тока. Из рисунка следует, что

(5.9)

 

Рис. 5.4 Рис. 5.5

Из прямоугольного треугольника получаем откуда ам­плитуда силы тока имеет значение

. (5.10)

Следовательно, если напряжение в цепи изменяется по закону U = U m cos w t, то в цепи течет ток

(5.11)

где j и I m определяются соответственно формулами (5.9) и (5.10). Величина

(5.12)

называется полным сопротивлением цепи, а величина

реактивным сопротивлением.

Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL в сумме равны приложенному напряжению U. Векторная диаграмма для данного случая представлена на рис. 217, из которого следует, что

(5.13)

Рис. 5.6

Выражения (5.9) и (5.10) совпадают с (5.13), если в них 1/(wC) = 0, т.е. С =¥. Следовательно, отсутствие конденсатора в цепи означает С =¥, а не С= 0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, получим цепь, в которой конденсатор отсутствует (расстоя­ние между обкладками стремится к нулю, а емкость — к бесконечности.

§ 5.2. Резонанс напряжений

Если в цепи переменного тока, содержащей последовательно включенные конденсатор, катушку индуктивности и резистор (см. рис. 5.5),

(5.14)

то угол сдвига фаз между током и напряжением (5.9) обращается в нуль (j =0), т. е. изменения тока и напряжения происходят синфазно. Условию (5.14) удовлетворяет частота

(5.15)

В данном случае полное сопротивление цепи Z (5.12) становится минимальным, равным активному сопротивлению R цепи, и ток в цепи определяется этим сопротивле­нием, принимая максимальные (возможные при данном U m) значения. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, прило­женному к цепи (UR = U), а падения напряжений на конденсаторе (UC) и катушке индуктивности (UL) одинаковы по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений (последовательным резонансом), а частота (5.15) — резонансной частотой. Векторная диаграмма для резонанса напряжений при­ведена на рис. 5.8, а зависимость амплитуды силы тока от w дана на рис. 5.7.

Рис. 5.7

 

В случае резонанса напряжений

подставив в эту формулу значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим

где Q — добротность контура, определяемая выражением (146.14). Так как доброт­ность обычных колебательных контуров больше единицы, то напряжение как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонан­са на конденсаторе можно получить напряжение с амплитудой QU m (Q в данном случае—добротность контура, которая может быть значительно больше U m). Это усиление напряжения возможно только для узкого интервала частот вблизи резонанс­ной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции элект­рических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

§ 5.3. Резонанс токов

Рассмотрим цепь переменного тока, содержащую параллельно включенные конден­сатор емкостью С и катушку индуктивностью L (рис. 5.9). Для простоты допустим, что активное сопротивление обеих ветвей настолько мало, что им можно пренебречь. Если приложенное напряжение изменяется по закону U= U m сos w t (см. (5.1)), то, согласно формуле (5.11),в ветви 1С2 течет ток

амплитуда которого определяется из выражения (5.10) при условии R= 0 и L =0:

Рис. 5.8 Рис. 5.9

Начальная фаза j 1 этого тока по формуле (5.9) определяется равенством

(5.16)

Аналогично, сила тока в ветви 1L2

амплитуда которого определяется из (5.10) при условии R= 0 и С =¥ (условие отсутствия емкости в цепи, см. § 5.1.):

Начальная фаза j 2 этого тока (см. (5.9))

(5.17)

Из сравнения выражений (151.1) и (151.2) вытекает, что разность фаз токов в ветвях 1С2 н 1L2 равна j 1 —j 2 =p, т. е. токи в ветвях противоположны по фазе. Амплитуда силы тока во внешней (неразветвленной) цепи

Если w = w рез = , то I m1= I m2и I m=0. Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катуш­ку индуктивности, при приближении частоты w приложенного напряжения к резонанс­ной частоте w рез называется резонансом токов (параллельным резонансом). В данном случае для резонансной частоты получили такое же значение, как и при резонансе напряжений (см. § 5.2).

Амплитуда силы тока I m оказалась равна нулю потому, что активным сопротивле­нием контура пренебрегли. Если учесть сопротивление R, то разность фаз j 1 —j 2 будет равна p, поэтому при резонансе токов амплитуда силы тока I m будет отлична от нуля, но примет наименьшее возможное значение. Таким образом, при резонансе токов во внешней цепи токи I 1 и I 2 компенсируются и сила тока I в подводящих проводах достигает минимального значения, обусловленного только током через резистор. При резонансе токов силы токов I 1 и I 2 могут значительно превышать силу тока I.

Рассмотренный контур оказывает большое сопротивление переменному току с ча­стотой, близкой к резонансной. Поэтому это свойство резонанса токов используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы. Кроме того, резонанс токов используется в индукционных печах, где нагревание металлов производится вихревыми токами. В них емкость конденсатора, включенного параллельно нагревательной катушке, подбирает­ся так, чтобы при частоте генератора получился резонанс токов, в результате чего сила тока через нагревательную катушку будет гораздо больше, чем сила тока в подводя­щих проводах.

 

 

§ 5.4. Работа и мощность, выделяемая в цепи переменного тока

Мгновенное значение мощности переменного тока равно произведению мгновенных значений напряжения и силы тока:

где U(t)=U mcos wt, I(t)=I mcos(wt – j) (см. выражения (5.1) и (5.11)). Раскрыв cos(wt – j), получим

 

Практический интерес представляет не мгновенное значение мощности, а ее среднее значение за период колебания. Учитывая, что ácos2 w t ñ= 1/2, ásin w t cos w t ñ = 0, получим

(5.18)

Из векторной диаграммы (см. рис. 5.5) следует, что U m сos j = RI m. Поэтому

Такую же мощность развивает постоянный ток .

Величины

называются соответственно действующими (или эффективными) значениями тока и напряжения. Все амперметры и вольтметры градуируются по действующим значениям тока и напряжения.

Учитывая действующие значения тока и напряжения, выражение средней мощности (5.18) можно запасать в виде

или P = IU соs j. (5.19)

где множитель соs j называется коэффициентом мощности. Угол j - это сдвиг фаз между током и напряжением.

Формула (5.19) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи реактивное сопротивление отсутствует, то cos j =1 и P=IU. Если цепь содержит только реактивное сопротивление (R =0), то cos j =0 и средняя мощ­ность равна нулю, какими бы большими ни были ток и напряжение. Если cos j имеет значения, существенно меньшие единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приведет либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить соs j, наименьшее допустимое значение которого для промышленных уста­новок составляет примерно 0,85.

Мощность Р называют активной мощностью, т.к. она отвечает за выделение джоулевой теплоты, т.е. необратимое преобразование энергии электрического тока в тепловую энергию. При этом справедливы все соотношения и условия их применения, полученные для постоянного тока, т.е.

A = Pt.

Помимо активной мощности бывает еще полная S и реактивная Q мощности. Реактивная мощность Q

Q = IU sin j

возникает при наличии в цепи реактивных (L и C) элементов, приводит к увеличению тока, текущего по проводам, и не полному (оптимальному) использованию мощности генератора. Поэтому обычно стремятся максимально уменьшить Q. Между активной и реактивной мощностями существует сдвиг фаз ψ равный 90۫ или π/2.

Полная мощность S

S = IU = P2 + Q2.

Исторически сложилось, что единицы измерения мощностей различны:

[ S ] = B*A, [ P ] = Вт, [ Q ] = вар.

Date: 2015-05-18; view: 1068; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию