Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Определение уравновешивающего момента методом Н.Е. Жуковского





Основные понятия ТММ: звено, кинематическая пара, цепь, механизм

  1. Звено – это деталь или группа деталей, представляющих с кинемат-ой точки зрения единое целое (т.е. группа деталей, жестко соединенных между собой и движущихся как единое твердое тело). В зависимости от хар-ра движения звенья могут иметь собственные названия. Ниже приведены некоторые из них:
  2. – звено, совершающее вращательное движение вокруг неподвижной оси и делающее при этом полный оборот;
  3. – звено, совершающее возвратно-вращательное движение; ползун – звено, движущееся поступательно;
  4. – звено, совершающее сложное плоско-параллельное движение;
  5. – коромысло (или, иногда, кривошип), по которому движется ползун;
  6. – звено, принятое за неподвижное (по определению звена стойка в механизме может быть только одна – все неподвижные детали обязательно крепятся на некоторой станине, корпусе, картере, основании и представляют одну жесткую конструкцию, т.е. одно звено).

 

Кинематическая пара – подвижное соединение двух соприкасающихся звеньев, допускающих их относительное движение.

Кинематическая пара, у которой соединение двух звеньев происходит по поверхности, называется низшей, в тех случаях, когда соединение двух звеньев происходит по линии или точке, такую кинематическую пару называют высшей.

Высшие кинематические пары имеют компактную конструкцию и меньшие потери на трение, чем низшие пары. Но низшие пары более износостойкие, обладают большей нагрузочной способностью.

По предложению акад. И.И. Артоболевского кинематические пары делят на классы.

Для свободного тела в пространстве число степеней подвижности равно шести, тогда H = 6 – S, где S – число наложенных условий связи, изменяющееся от 1 до 5. При S = 6 кинематическая пара становится жестким звеном, а при S = 0 кинематической пары не существует.

При S = 1 кинематические пары имеют пять степеней подвижности и относятся к первому классу, при S= 2 – четыре степени подвижности и относятся ко второму классу. Наибольшее распространение получили кинематические пары 5 класса (одноподвижные). К ним относятся поступательная, вращательная и винтовая пары.

 

Кинематическая цепь – это сочетание звеньев, соединенных в кинемат-кие пары. Имеется определенная классификация кинематических цепей – цепи могут быть простыми и сложными, замкнутыми (закрытыми) и разомкнутыми (открытыми), пространственными и плоскими.

Механизмом называется кинемат-ая цепь, имеющая стойку (т.е. звено, принятое за неподвижное), в которой движение одного или нескольких звеньев полностью определяет характер движения остальных звеньев этой цепи. т.е.- это кинематическая цепь, обладающая определенностью движения всех звеньев. Только одним звеньям дается принудительное движение), а другие получают движение от этих звеньев. В итоге механизм можно трактовать как мех-ую систему тел, предназначенную для преобразования, движения одного или нескольких тел в требуемое движение других тел. Звенья, законы движения которых заданы, называются входными. Звенья, законы которых надо определить, называются выходными. Количество входных звеньев определяется числом степеней свободы кинематической цепи, положенной в основу данного механизма. Ведущим звеном называется звено, к которому подводится мощность; ведомое звено – звено, с которого снимается мощность (для выполнения полезной работы).

ГРУППА АСУРА

УРАВНОВЕШИВАЮШИЙ МОМЕНТ

Определение уравновешивающего момента методом Н.Е. Жуковского

 

Физический смысл уравнения Жуковского Н.Е. – сумма мгновенных мощностей, развиваемых силами и моментами, действующими на звенья механизма, равна нулю.

 

 

Для его составления прикладываем все силы в соответствующие точки плана скоростей, предварительно повернув их на 90 градусов (силы можно поворачивать в любую сторону, но все силы надо поворачивать в одну сторону – по часовой стрелке или против часовой стрелки).

Взяв, формально, сумму моментов этих повернутых сил относительно полюса плана скоростей, фактически получаем уравнение развиваемых ими мощностей. К полученному уравнению добавляем мощности, развиваемые моментами. При составлении уравнения Жуковского Н.Е. учитываем знак мощности, развиваемой данной силой или моментом:

  • мощность, развиваемая силой, положительна, если эта сила является движущей, т.е. ее истинное направление составляет острый угол (меньше 90о) с направлением скорости точки приложения; мощность силы сопротивления (угол между истинным направлением силы и скорости точки ее приложения больше 90о) входит в уравнение Жуковского Н.Е. со знаком минус. Необходимо также отметить, что знак достаточно установить по одной силе, так как знаки остальных слагаемых определяются автоматически.
  • мощность, развиваемая моментом, является положительной, если момент является движущим (его направление совпадает с угловой скоростью звена, к которому он приложен), и мощность отрицательна для момента сопротивления (направления момента и угловой скорости звена не совпадают).

Примечание: для составления уравнения Жуковского Н.Е. можно поворачивать на 90оплан скоростей, прикладывая к нему силы в истинном направлении.

Кинематическое исследование механизма методом планов скоростей и ускорений

Планом скоростей (ускорений) механизма называют чертеж, на котором скорости (ускорения) различных точек изображены в виде векторов, показывающих направления и величины (в масштабе) этих скоростей (ускорений) в данный момент времени.

Абсолютное движение любой точки звена может быть составлено из переносного и относительного. За переносное принимается известное движение какой-либо точки. Относительное – движение данной точки относительно той, движение которой принято за переносное:

На плане абсолютные скорости (ускорения) изображаются векторами, выходящими из полюса плана.

На конце вектора абсолютной скорости (ускорения) ставится строчная (маленькая) буква, соответствующая той точке механизма, скорость (ускорение) которой данный вектор изображает. Отрезок, соединяющий концы векторов абсолютных скоростей, представляет собой вектор относительной скорости соответствующих точек.

Date: 2015-07-27; view: 1017; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию