Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные законы гемодинамики, использование их для объяснения движения крови по сосудам. Линейная и объемная скорость кровотока в различных отделах системы кровообращения





Гемодинамика - один из разделов биомеханики, изучающий законы движения крови по кровеносным сосудам. Задача гемодинамики - установить взаимосвязь между основными гемодинамическими показателями, а также их зависимость от физических параметров крови и кровеносных сосудов.

К основным гемодинамическим показателям относятся давление и скорость кровотока.

Давление - это сила, действующая со стороны крови на сосуды, приходящаяся на единицу площади : Р = F / S. Различают объемную и линейную скорости кровотока.Объемной скоростью Q называют величину, численно равную объему жидкости, перетекающему в единицу времени через данное сечение трубы: , единица измерения (м3 / с).

Линейная скорость представляет путь, проходимый частицами крови в единицу времени: , единица измерения (м / с). Поскольку линейная скорость неодинакова по сечению трубы, то в дальнейшем речь будет идти только о линейной скорости, средней по сечению.

Линейная и объемная скорости связаны простым соотношением Q = VS, где S - площадь поперечного сечения потока жидкости.

Так как жидкость несжимаема (то есть плотность ее всюду одинакова), то через любое сечение трубы и в единицу времени протекают одинаковые объемы жидкости:

Q = VS = Сonst (3).

Это называется условием неразрывности струи. Оно вытекает из закона сохранения массы для несжимаемой жидкости. Уравнение неразрывности струи относится в равной мере к движению всякой жидкости, в том числе и вязкой. При описании физических законов течения крови по сосудам вводится допущение, что количество циркулирующей крови в организме постоянно. Отсюда следует, что объемная скорость кровотока в любом сечении сосудистой системы также постоянна: Q = const.

В реальных жидкостях (вязких) по мере движения их по трубе потенциальная энергия расходуется на работу по преодолению внутреннего трения, поэтому давление жидкости вдоль трубы падает. Для стационарного ламинарного течения реальной жидкости в цилиндрической трубе постоянного сечения справедлива формула (закон) Гагена—Пуазейля:



, (4)

где ∆Р = Р1 - Р2 - падение давления, то есть разность давлений у входа в трубу Р1и на выходе из нее Р2 на расстоянии l. Величина

(5)

называется гидравлическим сопротивлением сосуда. Тогда закон Пуазейля можно записать в виде:

∆Р=QW (6).

Из закона Пуазейля следует, что падение давления крови в сосудах зависит от объемной скорости кровотока и в сильной степени от радиуса сосуда. Так, уменьшение радиуса на 20 % приводит к увеличению падения давления более чем в 2 раза. Даже небольшие изменения просветов кровеносных сосудов сильно сказываются на падении давления. Не случайно основные фармакологические средства нормализации давления направлены прежде всего на изменение просвета сосудов.

Границы применимости закона Пуазейля: 1) ламинарное течение; 2) гомогенная жидкость; 3) прямые жесткие трубки; 4) удаленное расстояние от источников возмущений (от входа, изгибов, сужений).






Date: 2015-10-19; view: 482; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию