Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные законы гемодинамики, использование их для объяснения движения крови по сосудам. Линейная и объемная скорость кровотока в различных отделах системы кровообращения





Гемодинамика - один из разделов биомеханики, изучающий законы движения крови по кровеносным сосудам. Задача гемодинамики - установить взаимосвязь между основными гемодинамическими показателями, а также их зависимость от физических параметров крови и кровеносных сосудов.

К основным гемодинамическим показателям относятся давление и скорость кровотока.

Давление - это сила, действующая со стороны крови на сосуды, приходящаяся на единицу площади : Р = F / S. Различают объемную и линейную скорости кровотока.Объемной скоростью Q называют величину, численно равную объему жидкости, перетекающему в единицу времени через данное сечение трубы: , единица измерения (м3 / с).

Линейная скорость представляет путь, проходимый частицами крови в единицу времени: , единица измерения (м / с). Поскольку линейная скорость неодинакова по сечению трубы, то в дальнейшем речь будет идти только о линейной скорости, средней по сечению.

Линейная и объемная скорости связаны простым соотношением Q = VS, где S - площадь поперечного сечения потока жидкости.

Так как жидкость несжимаема (то есть плотность ее всюду одинакова), то через любое сечение трубы и в единицу времени протекают одинаковые объемы жидкости:

Q = VS = Сonst (3).

Это называется условием неразрывности струи. Оно вытекает из закона сохранения массы для несжимаемой жидкости. Уравнение неразрывности струи относится в равной мере к движению всякой жидкости, в том числе и вязкой. При описании физических законов течения крови по сосудам вводится допущение, что количество циркулирующей крови в организме постоянно. Отсюда следует, что объемная скорость кровотока в любом сечении сосудистой системы также постоянна: Q = const.

В реальных жидкостях (вязких) по мере движения их по трубе потенциальная энергия расходуется на работу по преодолению внутреннего трения, поэтому давление жидкости вдоль трубы падает. Для стационарного ламинарного течения реальной жидкости в цилиндрической трубе постоянного сечения справедлива формула (закон) Гагена—Пуазейля:



, (4)

где ∆Р = Р1 - Р2 - падение давления, то есть разность давлений у входа в трубу Р1и на выходе из нее Р2 на расстоянии l. Величина

(5)

называется гидравлическим сопротивлением сосуда. Тогда закон Пуазейля можно записать в виде:

∆Р=QW (6).

Из закона Пуазейля следует, что падение давления крови в сосудах зависит от объемной скорости кровотока и в сильной степени от радиуса сосуда. Так, уменьшение радиуса на 20 % приводит к увеличению падения давления более чем в 2 раза. Даже небольшие изменения просветов кровеносных сосудов сильно сказываются на падении давления. Не случайно основные фармакологические средства нормализации давления направлены прежде всего на изменение просвета сосудов.

Границы применимости закона Пуазейля: 1) ламинарное течение; 2) гомогенная жидкость; 3) прямые жесткие трубки; 4) удаленное расстояние от источников возмущений (от входа, изгибов, сужений).






Date: 2015-10-19; view: 295; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.004 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию