Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






По видам взаимодействий. Классификация элементарных частиц

Классификация элементарных частиц. Характеристики элементарных частиц.

 

Элементарная частица — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые (согласно существующим представлениям) невозможно расщепить на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы.

В настоящее время принята следующая классификация элементарных частиц.

По величине спина в се элементарные частицы делятся на два класса:

фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

бозоны — частицы с целым спином (например, фотон, глюон, мезоны).

 

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы:

адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

мезоны (адроны с целым спином, то есть бозоны);

барионы (адроны с полуцелым спином, то есть фермионы). К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы:

лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:

фотон — частица, переносящая электромагнитное взаимодействие;

восемь глюонов — частиц, переносящих сильное взаимодействие;

три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;

гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных видов излучения.

Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

 

Фундаментальные элементарные частицы перечислены в Таблице 1.

Фермионы/кварки Верхний (u) Нижний (d) Очарованный (c) Странный (s) Истинный (t) Прелестный (f)
Фермионы/лептоны Электрон Позитрон Мюон Тау-лептон Нейтрино  
Калибровочные бозоны Фотон W-бозон Z-бозон Глюон    
Не обнаружены Бозон Хиггса Гравитон Другие элементарные частицы

 

В физике элементарных частиц вводят понятие аромата как набора квантовых чисел, характеризующих тип кварка или лептона. Существует шесть кварковых ароматов, по числу типов кварков: u, d, s, c, b, t. Аромат кварков сохраняется в сильных и электромагнитных взаимодействиях, но не сохраняется в слабых взаимодействиях.

Для всех именованных ароматов кварков (странность, очарование, прелесть и истинность) правило следующее: значение аромата и электрический заряд кварка имеют одинаковый знак. По этому правилу любой аромат, переносимый заряженным мезоном, имеет тот же знак, что и его заряд.

Лептонные ароматы — другое название для трёх лептонных чисел: электронного, мюонного и тау-лептонного.

 

Ароматы и квантовые числа:

Лептонное число: L

Барионное число: B

Странность: S

Очарование: C

Прелесть: B'

Истинность: T

Изоспин: I или Iz

Слабый изоспин: Tz

Электрический заряд: Q.

 

Стандартная модель — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не включает в себя гравитацию.

Стандартная модель (рис. 6.1) состоит из следующих положений.

1) Всё вещество состоит из 12 фундаментальных частиц-фермионов: 6 лептонов (электрон, мюон, тау-лептон, и три сорта нейтрино) и 6 кварков (u, d, s, c, b, t), которые можно объединить в три поколения фермионов.

2) Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряжённые лептоны (электрон, мюон, тау-лептон) — в слабых и электромагнитных; нейтрино — только в слабых взаимодействиях.

3) Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований. Частицами-переносчиками взаимодействий являются:

8 глюонов для сильного взаимодействия;

3 тяжёлых калибровочных бозона (W+, W−, Z0) для слабого взаимодействия;

один фотон для электромагнитного взаимодействия.

 

Рис. 6.1. Стандартная модель элементарных частиц.

 

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них — кварки. Другие шесть — лептоны, три из которых являются нейтрино, а оставшиеся три несут единичный отрицательный заряд: электрон, мюон и тау-лептон.

Поколения частиц
Первое поколение Второе поколение Третье поколение
Электрон: e Мюон: μ Тау-лептон: τ
Электронное нейтрино: νe Мюонное нейтрино: νμ Тау-нейтрино: ντ
u-кварк («верхний»): u c-кварк («очарованный»): c t-кварк («истинный»): t
d-кварк («нижний»): d s-кварк («странный»): s b-кварк («прелестный»): b

Также существуют 12 фермионных античастиц, соответствующих вышеуказанным двенадцати частицам.

Античастицы
Первое поколение Второе поколение Третье поколение
позитрон: e+ Положительный мюон: μ+ Положительный тау-лептон: τ+
Электронное антинейтрино: Мюоное антинейтрино: Тау-антинейтрино:
u -антикварк: c -антикварк: t -антикварк:
d -антикварк: s -антикварк: b -антикварк:

 

В качестве примера рассмотрим классификацию составных частиц, входящих в состав атомного ядра.

Протон относится к барионам, имеет спин ½ (класс фермионов), электрический заряд +1. В физике элементарных частиц рассматривается как нуклон с проекцией изоспина +1/2 (в ядерной физике принят противоположный знак проекции изоспина). Состоит из трёх кварков (один d -кварк и два u -кварка). Стабилен (нижнее ограничение на время жизни — 2,9×1029 лет).

Нейтрон является фермионом и принадлежит к классу барионов; рассматривается как связанное состояние трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (кварковая структура udd). Близость значений масс протона и нейтрона обусловлена свойством приближённой изотопической инвариантности: в протоне (кварковая структура uud) один d -кварк заменяется на u -кварк, но поскольку массы этих кварков очень близки, такая замена слабо сказывается на массе составной частицы.

 

Рис. 6.2. Кварковая структура нейтрона

 

 

Поскольку нейтрон тяжелее протона, то он может распадаться в свободном состоянии. Единственным каналом распада, разрешённым законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является бета-распад нейтрона на протон, электрон и электронное антинейтрино. Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия. Однако ввиду специфических свойств слабого взаимодействия, скорость этой реакции аномально мала из-за крайне малого энерговыделения (разности масс начальных и конечных частиц). Именно этим объясняется тот факт, что нейтрон является настоящим долгожителем среди элементарных частиц: его время жизни, приблизительно равное 15 минутам, примерно в миллиард раз больше времени жизни мюона — следующей за нейтроном метастабильной частице по времени жизни.

Кроме того, разница масс между протоном и нейтроном порядка 1,3 МэВ невелика по меркам ядерной физики. В результате, в ядрах нейтрон может находиться в более глубокой потенциальной яме, чем протон, и потому бета-распад нейтрона оказывается энергетически невыгодным. Это приводит к тому, что в ядрах нейтрон может быть стабильным.

 

 


<== предыдущая | следующая ==>
Дозиметрический контроль | 

Date: 2015-07-24; view: 1774; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию