Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







ТИПОВЫЕ СЕТЕВЫЕ АРХИТЕКТУРЫ





При всём многообразии конкретных реализаций современных инфор­мационных сетей, абсолютное большинство из них имеет в своей основе ту или иную типовую архитектуру.

На сегодняшний день принято определять пять типовых архитектур по­строения информационных сетей:

· архитектура терминал-главный компьютер;

· одноранговая архитектура;

· архитектура клиент-сервер;

· архитектура компьютер-сеть;

· архитектура интеллектуальной сети.

Следует отметить, что в рамках каждой из типовых архитектур сущест­вует определённое разнообразие подходов к реализации сетевой архитек­туры, но в основе своей все они укладываются в границы той или иной базо­вой концепции построения информационной сети, из числа упомянутых выше.

 

3.1. АРХИТЕКТУРА ТЕРМИНАЛ-ГЛАВНЫЙ КОМПЬЮТЕР

 

Архитектура «терминал-главный компьютер» (terminal-host computer architecture, англ.) – концепция построения информационной сети, в которой вся обработка данных осуществляется в одном либо группе главных компью­теров.

Эта архитектура определяет два типа оконечного сетевого оборудова­ния (Data Terminal EquipmentDTE[1]). Первый из них осуществляет хранение данных, их обработку, маршрутизацию в сети, управление сетью. Этот тип представлен так называемыми главными (центральными) компьютерами или мэйнфреймами (mainframe, англ.). Главные компьютеры в общем случае че­рез мультиплексоры-демультиплексоры[2] взаимодействуют со вторым типом оконечного оборудования – терминалами[3] (рис.3.1.), задачами которого явля­ются:

· передача мэйнфрейму[4] команд на организацию сеансов и выполне­ние заданий;

· ввод в мэйнфрейм данных, необходимых для выполнения заданий;

· получение от мэйнфрейма результатов проведенных расчетов.

Главный компьютер с группой терминалов образуют централизован­ный комплекс обработки данных. Здесь функции взаимодействия партнеров (мэйнфрейма и терминалов) резко асимметричны.

Во время появления рассматриваемой архитектуры Персо­нальных Компьютеров (ПК) ещё не было. Поэтому, неравно­пра­вие партнёров опреде­лялось сложностью и дорого­визной выпус­кавшихся базовых компьютеров, а также стремле­нием упростить оборудование, находящееся на рабочих местах специалистов, сделать его малогабаритным и экономически вы­годным. В сети используется один тип ОС, на котором работает мэйнфрейм.

Мэйнфрейм – классический пример централизации вычис­лений, по­скольку в едином комплексе сконцентрированы все ин­формационные и вы­числительные ресурсы, хранение и обработка огромных массивов данных.

Основные достоинства централизованной архитектуры «терминал-главный компьютер» обусловлены простотой админи­стрирования и защиты информации. Все терминалы были одно­типными, а, следовательно, устрой­ства на рабочих местах поль­зователей вели себя предсказуемо и в любой мо­мент могли быть заменены. Затраты на обслуживание терминалов и линий связи легко прогнозировались.

Классическим примером архитектуры сети с центральным компьюте­ром является известная сеть ALOHA (привет, гавай­ский яз.), представляю­щая собою сеть Гавай­ского университета. Сеть начала работать в 1970г. Она обеспечивала связь между центральной вычислительной машиной, располо­женной в Гоно­лулу, и терминалами, расположенными на всех островах Гавай­ского архипелага. Сеть ALOHA не использовала мультиплек­соры-де­мультиплек­соры. Вместо них для связи были выделены два радиочастотных канала: один отводился для передачи сооб­щений от мэйнфрейма к термина­лам, второй – в обратном на­правлении. Разделение второго канала между терминалами осу­ществлялось по методу случайного доступа.

В сетях рассматриваемой архитектуры постепенно терминалы заменя­лись ПК. Вследствие этого, часть функций обработки данных, ранее выпол­нявшихся мэйнфреймами, переходила на ПК. Помимо этого, с центральных компьютеров также снимались задачи коммутации и маршрутизации, кото­рые передавались узлам коммутации. Вместо мультиплексоров-демультип­лексоров стало использоваться специальное коммуникационное оборудова­ние (DCE).

В результате, постепенно архитектура «терминал-главный компьютер» в её чистом виде была преимущественно вытеснена другими архитектурами и, прежде всего, архитектурой «клиент-сервер».

3.2. ОДНОРАНГОВАЯ АРХИТЕКТУРА СЕТИ

 

Одноранговая архитектура (peer-to-peer architecture) – концепция ин­формационной сети, в которой каждая рабочая станция может предоставлять и потреблять ресурсы. Иногда такую сеть (архитектуру) называют пиринго­вой.[5]

Архитектура одноранговой сети характеризуется тем, что в ней все ра­бочие станции (компьютеры) равноправны (рис.3.2)и их обращение к ресурсам друг друга является симметричным. Благодаря этому, пользователь может выполнять распределенную обработку данных, работать с прикладными про­граммами, внешними устройствами, а также файлами, находя­щимися в любых системах. Одноранговая ар­хитектура обес­печивает:

· подключение одноранговой сети в качестве единого клиента к боль­шой локальной сети, основанной на архитектуре клиент-сервер;

· облегченную организацию телеконференций.

Роль, которую играет каждый компьютер во взаимодействиях с дру­гими компьютерами сети при предоставлении некоторого сервиса, не фикси­руется, как это имеет место, например, в архитектуре «клиент-сервер», а за­висит от контекста выполняемой операции и от характеристик текущей си­туации. В одних случаях компьютер может быть сервером, в других - клиен­том.

Эта архитектура характеризуется простотой организации сети, легко расширяется.

Основными преимуществами одноранговой архитектуры перед архи­тектурами «терминал-главный компьютер» и «клиент-сервер» выступают низкая стоимость, простота эксплуатации и хорошее отражение реального процесса работы групп пользовате­лей. Именно здесь предоставляются удоб­ные формы передачи данных друг другу и извлечения необходимых про­грамм и данных из всех компьютеров сети.

Использование одноранговой архитектуры не исключает применение в этой же сети также элементов архитектур других типов. В таком случае при­нято говорить об интегральной архитектуре, при использовании которой одни виды взаимодействия происходят при выполнении симметричных, а другие – несимметричных (относительно объектов сети) протоколов.

На этапе раннего развития персональных компьютеров одноранговая сеть с равноправными узлами была общепринятым способом совместного использования файлов и периферийных устройств. Одноранговые сети по­требляют достаточно мало ресурсов компьютера, однако интенсивная работа в сети существенно замедляет непосредственную работу пользователя на сервере.

Основные ограничения для одноранговых сетей следующие:

· Количество компьютеров в одноранговой сети должно быть в преде­лах 10 – 30, в зависимости от интенсивности обмена информационными со­общениями в сети.

· Не принято использовать рабочие станции, связанные одноранговой сетью, в качестве серверов приложений.[6] Эти сети предназначены для разделе­ния таких ресурсов, как файлы, многопользовательские базы данных, периферийное оборудование (принтеры, сканеры и др.).

· Работа приложений на компьютере, служащем сервером в одноранго­вой сети, ухудшается, когда ресурсы этого компьютера использу­ются другими. Можно управлять степенью ухудшения производительности, назначая более высокие приоритеты локальным задачам, однако при этом замедляется доступ других пользователей сети к её разделяемым аппаратным и программным ресурсам.

Проблемой одноранговой сети является ситуация, когда рабочая стан­ция (станции) отключается от сети. В этих случаях из сети исчезают те виды сервиса, которые предоставляла отключенная станция. Поэтому возникает потребность осуществлять мониторинг состояния компонентов сети, которые могут независимо отключаться от нее в любое время. Усложняется решение проблем безопасности и обеспечения целостности данных.

Одноранговая архитектура эффективна в небольших локальных сетях. В крупных сетях (с большим числом станций), в том числе локальных, она уступает место архитектуре клиент-сервер.

Одной из первых одноранговых сетевых систем была система PC LAN фирмы IBM, разработанная в кооперации с Microsoft. PC LAN была проста в установке и управлении, не требовала привлечения администратора сети для поддержания ее работоспособности. Однако когда количество соединенных в такую сеть компьютеров приближалось к сотне, характеристики системы резко ухудшались.

Изначально на одноранговой архитектуре основывалась и ведомствен­ная сеть ARPANet(см. раздел 5 настоящего пособия), впоследствии ставшая стартовым ядром Internet.

В 90-х годах прошлого столетия одноранговая архитектура, в силу при­сущих ей ограничений, сдала позиции в пользу других сетевых архитектур. Однако в настоящее время вновь оживился интерес к этой сетевой концеп­ции. Не в последнюю очередь, это связано с резко возросшими показателями производительности рабочих станций. Появились исследовательские про­екты, системные прототипы и программные продукты, посвященные этой проблематике. Продолжается поиск и новых технических решений. Вполне можно предположить, что многие распределенные системы нового поколе­ния станут базироваться на одноранговой архитектуре.

 

3.3. АРХИТЕКТУРА КЛИЕНТ-СЕРВЕР

 

Архитектура клиент-сервер (CSAClient-Server Architec­ture, англ.) – концепция организации сети, в которой основная часть ее ресурсов сосредо­точена в серверах, обслуживающих своих клиентов.

Техническая революция, вызванная появлением ПК, сделала возмож­ным во многих случаях иметь вычислительные и инфор­мационные ресурсы на рабочем столе пользователя и управлять ими по собственному желанию с помощью оконного графиче­ского интерфейса. Увеличение производительно­сти ПК позво­лило перенести части системы (интерфейс с пользователем, при­кладную логику) для выполнения на ПК, непосредственно на ра­бочем месте, а функции обработки данных оставить на централь­ном компьютере. Система стала распределенной – одна часть функций выполняется на цен­тральном компьютере, другая – на персональном, который связан с цен­тральным посредством ком­муникационной сети. Таким образом, появилась клиент-сервер­ная модель взаимодействия компьютеров и программ в сети и на этой основе стали развиваться средства разработки приложений для реа­лизации информационных систем [8].

Как следует из названия, архитектура CSA определяет два типа взаи­модействующих в сети компонентов: серверы и клиенты. Каждый из них яв­ляется комплексом взаимосвязанных прикладных программ. Серверы[7] предос­тавляют ресурсы, необходимые пользователям. Клиенты используют эти ресурсы и предоставляют удобные пользовательские интерфейсы.

Термины «клиент» и «сервер» обозначают роли, которые играют раз­личные компоненты в распределенной среде вычислений. Компоненты «кли­ент» и «сервер» не обязательно должны работать на разных машинах, хотя чаще всего именно так и бывает – клиент-приложение находится на рабочей станции пользователя, а сервер – на специальной выделенной машине.

Клиент формирует запрос на сервер для выполнения соответствующих функций. Например, файл-сервер обеспечивает хранение данных общего пользования, организует доступ к ним и передает данные клиенту. Обработка данных распределяется в том или ином соотношении между сервером и кли­ентом. В последнее время долю обработки, приходящуюся на клиента, стали называть «толщиной» клиента.

В современной архитектуре «клиент-сервер» выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах (например, компьютерах), находящихся на рабо­чих местах пользователей. Данные, в основном, хранятся в серверах. Сетевые службы являются совместно используемыми прикладными программами, ко­торые взаимодействуют с клиентами, серверами и данными. Кроме этого, службы управляют процедурами распределенной обработки данных, инфор­мируют пользователей о происходящих в сети изменениях.

В зависимости от сложности выполняемых прикладных процессов и числа работающих клиентов различают двух- и трехуровневые архитектуры.

Наиболее простой является двухуровневая (Two-tier archi­tecture, англ.) архи­тектура (рис.3.3). Здесь, клиенты выполняют простые операции обработки данных, отрабатывают интерфейс взаимодействия с сервером, обращаются к нему с запросами. Большую же часть задач обработки выполняет сервер, ко­торый для этих целей зачастую имеет базу данных (БД) и в этом случае на­зывается сервером базы данных. Сервер БД отвечает за хране­ние, управление и целостность данных, а также обеспечивает возможность одновременного дос­тупа нескольких пользователей. Клиентская часть представлена «тол­стым клиентом», то есть приложением, на котором сконцентрированы ос­новные правила работы системы и расположен программный пользова­тель­ский интерфейс.

При всей простоте построения такой архитектуры, она обладает серь­ёзными не­достатками, наиболее су­щественные из которых – высокие требо­вания к сетевым ресурсам и пропускной спо­собности сети, а также слож­ность обновления про­граммного обеспечения из-за логики взаимодействия, распределённой ме­жду клиентом и сервером БД. Кроме того, при большом количе­стве клиентов возрастают требования к аппаратному обеспечению сервера БД – самого дорогостоящего узла в лю­бой информационной системе.

Следующим шагом развития клиент-сервер­ной архитектуры стало внедрение среднего уровня, реализующего за­дачи управления механиз­мами доступа к БД (рис.3.4). В трехуровневой архитектуре (three-tierar­chitecture, англ.) вместо единого сервера приме­няются серверы приложе­ний и серверы БД. Их ис­пользование позволяет резко увеличивать произ­водительность локальной сети.

Плюсы данной ар­хитектуры очевидны. На сервере приложений, стало возможно подклю­чать различные БД. Те­перь, сервер базы данных освобожден от задач распараллеливания работы между различными пользо­вателями, что существенно снижает его аппаратные требования. В такой си­туации оказалось возможным снизить требования к клиентским машинам за счет выполнения ресурсоемких операций сервером приложений и решающих теперь только задачи визуализации данных. Поэтому такой вариант CSA часто называют архитектурой «тонкого клиента».

Но узким местом здесь, как и в двухуровневой CSA, остаются повы­шенные требования к пропускной способности сети, что накладывает жест­кие ограничения на использование таких систем в сетях с неустойчивой свя­зью и малой пропускной способностью (сети мобильной связи, GPRS, а в ряде случаев и Internet).

Дальнейшее развитие CSA связано с многоуровневой архитектурой (N-tier architecture, англ.), которая использует средства разделения программ или распределенные объекты для разделения вычислительной нагрузки среди такого количества серверов приложений, которое необходимо при имею­щемся уровне нагрузки. При многоуровневой модели системы количество возможных клиентских мест значительно больше, чем при использовании двух- и трехзвенной моделей.

 

ИСТОЧНИКИ ИНФОРМАЦИИ

 

1. Служба тематических толковых словарей «Glossary Commander». (http://www.glossary.ru).

 

8. Альперович М. Еще раз об архитектуре «клиент-сервер». «Компьютер-Информ». 1997г., № 2

 


[1] Оконечное оборудование [данных] – DTE, представляет собою тип сете­вых устройств, генерирующих или принимающих данные в соответствии с принятыми протоколами, выполняющих их обработку и хранение и функ­ционирующих под управлением прикладного процесса [1].

Наряду с оборудованием DTE, в сетях широко используется еще один тип оборудования – DCE (Data Commu­nication Equipment, англ. – комму­никационное оборудование), не являющегося источником или конечным получателем данных.

 

[2] Мультиплексор – устройство, создающее из нескольких отдельных информационных потоков общий агрегированный поток, который можно передавать по одному физическому каналу связи.

Демультиплексор – устройство, разделяющее суммарный агрегированный поток на несколько составляющих потоков.

 

[3] Терминал - устройство для оперативного ввода и вывода информации, используемое при взаимодействии удалённого пользователя с вычислительной машиной или сетью.

 

[4] Термин «мэйнфрейм» в общем случае имеет два толкования: 1. Большая универсальная ЭВМ — высокопроизводительный компьютер со значительным объёмом оперативной и внешней памяти, предназначенный для организации централизованных хранилищ данных большой ёмкости и выполнения интенсивных вычислительных работ. 2. Компьютер с архитектурой IBM System/360, 370, 390, zSeries.

 

[5] Пиринговая – от английского peer-to-peer – равный с равным.

[6] Сервер приложений – компьютер, позволяющий другим компьютерам запускать операционную систему и приложения с него, а не со своих локальных дисков.

[7] Наиболее распространены следующие виды серверов: файл-серверы, северы баз данных, серверы печати, серверы электронной почты, WEB-серверы и другие. В последнее время интенсивно внедряются многофункциональные серверы приложений.








Date: 2015-11-13; view: 599; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.009 sec.) - Пожаловаться на публикацию