Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Узнайте больше. Цитоскелет. Цитоскелет – это опорно-двигательная система эукариотической клетки, состоящая из белковых нитчатых образований





 

Цитоскелет. Цитоскелет – это опорно-двигательная система эукариотической клетки, состоящая из белковых нитчатых образований. Эти структуры очень динамичны: они быстро возникают в результате полимеризации их элементарных молекул и так же быстро разбираются при деполимеризации.

Основные компоненты цитоскелета – фибриллярные структуры и микротрубочки.

Фибриллярные структуры. К фибриллярным компонентам цитоплазмы эукариотических клеток относят микрофиламенты и промежуточные филаменты.

Микрофиламенты – это белковые нити толщиной около 5 нм, которые обычно располагаются пучками или слоями в наружном слое цитоплазмы, непосредственно под плазматической мембраной. Их можно увидеть в псевдоподиях амёб или в микроворсинках кишечного эпителия. Внутри каждой микроворсинки находится пучок из 20–30 микрофиламентов, придающий ей жёсткость и прочность. В состав микрофиламентов входят сократительные белки, в основном актин и миозин. Следовательно, микрофиламенты являются также внутриклеточным сократительным аппаратом, обеспечивающим подвижность клеток и большинство внутриклеточных движений. Очень важны микрофиламенты для процессов фагоцитоза и пиноцитоза.

Промежуточные филаменты – это неветвящиеся, часто располагающиеся пучками белковые нити толщиной около 10 нм. Эта сложная система цитоскелетных нитей изучена относительно недавно. Оказалось, что, в отличие от других элементов цитоскелета, промежуточные филаменты построены в разных клетках из разных белков. Так, например, в клетках эпителия в состав промежуточных филаментов входит кератин, а в мышечных клетках – белок десмин. Особенно много промежуточных филаментов в клетках, подверженных механическим воздействиям.

 

В настоящее время для определения тканевого происхождения различных опухолей проводят анализ белков их промежуточных филаментов. Дело в том, что при перерождении клетки в раковую она теряет многие черты своей изначальной организации и определить тип опухоли очень трудно. Но белки промежуточных филаментов остаются такими же, какими они были в изначальной ткани. Исследуя белки филаментов в опухолевых клетках, можно точно определить, клетки какой ткани дали начало этой опухоли. Это правило распространяется и на метастазы опухолей, которые могут находиться далеко от места первоначального образования опухолей. Определение белков филаментов позволяет провести корректную цитодиагностику опухолей и правильно подобрать химиотерапевтические противоопухолевые препараты.

 

Микротрубочки Микротрубочки – это неветвящиеся длинные полые трубки, диаметром около 25 нм. Стенка микротрубочек состоит из плотно уложенных округлых субъединиц, основной компонент которых – белок тубулин. Микротрубочки присутствуют во всех эукариотических клетках. Образуя сеть в цитоплазме интерфазных клеток, микротрубочки создают внутриклеточный каркас – цитоскелет, необходимый для поддержания формы клетки. Микротрубочки входят в состав центриолей клеточного центра, веретена деления, ресничек и жгутиков. В больших количествах они обнаруживаются в отростках нервных клеток, чья форма должна быть постоянной. Кроме этого микротрубочки участвуют во внутриклеточном транспорте. По ним, как по рельсам, могут передвигаться мелкие вакуоли, содержащие различные вещества. Микротрубочки – очень динамичные структуры, они постоянно собираются и разбираются. Среднее время жизни микротрубочки в животной клетке в интерфазе около 10 минут, во время митоза – гораздо меньше. Есть в клетке и стабильные, долго живущие микротрубочки. Длина микротрубочек может быть самая различная: от десятых долей микрона до нескольких микрон. Добавление алкалоида колхицина предотвращает самосборку микротрубочек или приводит к разрушению уже существующих. Это действие колхицина используется, например, если необходимо остановить деление клетки.

Клеточный центр. Клеточный центр – это место организации и роста микротрубочек. В клетках животных и некоторых водорослей клеточный центр, или центросома, состоит из двух центриолей и связанных с ними микротрубочек – центросферы. Впервые центриоли были описаны немецким цитологом Вальтером Флемингом в 1875 г., но сам термин «центриоль» был предложен позже, в 1895 г. Немецкий учёный Теодор Бовери ввёл его для обозначения очень мелких телец, размер которых находился на границе разрешающей способности микроскопа. Подробно строение центриолей удалось изучить только с помощью электронного микроскопа.

Центриоль представляет собой полый цилиндр диаметром 150–250 нм и длиной 300–500 нм. Стенка центриоли состоит из девяти комплексов микротрубочек, причём каждый комплекс в свою очередь построен из трёх микротрубочек. Такие триплеты связаны между собой специальными белками. В центральной части цилиндра микротрубочек нет.

Обычно в интерфазных клетках присутствуют две центриоли, расположенные под прямым углом друг к другу. При подготовке клеток к митотическому делению центриоли удваиваются: две материнские центриоли расходятся, и около каждой из них возникает заново по одной новой дочерней, так что в клетке перед делением обнаруживаются четыре центриоли.

Центриоли участвуют в образовании нитей веретена деления. В клетках высших растений клеточный центр устроен по – другому и центриолей не содержит.

Реснички и жгутики. Это специальные органоиды движения, встречающиеся в некоторых клетках различных организмов. В световом микроскопе эти структуры выглядят как тонкие выросты клетки. В основании ресничек и жгутиков в цитоплазме видны мелкие гранулы – базальные тельца. Длина ресничек 5–10 мкм, а длина жгутиков может достигать 150 мкм.

Реснички и жгутики представляют собой тонкие выросты цитоплазмы, от основания до самой вершины покрытые плазматической мембраной. Внутри выроста цитоплазмы по кругу расположены микротрубочки – 9 пар (дуплетов). Дуплеты связаны друг с другом при помощи молекул белка. Кроме периферических дуплетов микротрубочек, образующих цилиндр, в центре реснички располагается пара центральных микротрубочек. В основании органоидов движения, в цитоплазме, расположены базальные тельца – одно у ресничек и два у жгутиков. Базальное тельце по своей структуре очень сходно с центриолью. Оно тоже состоит из 9 триплетов микротрубочек.

Реснички и жгутики структурно связаны с базальным тельцем и составляют вместе единое целое.

Жгутики характерны для ряда простейших (класс Жгутиконосцы), зооспор и сперматозоидов. Реснички – это органоиды движения инфузорий, свободноплавающих личинок многих морских животных и мужских гамет некоторых папоротников. Имеют реснички и клетки мерцательного эпителия у многоклеточных животных (до 500 ресничек на клетку).

 

Дефекты ресничек могут приводить к различным врождённым патологиям. Так, например, нарушение структуры мерцательного эпителия дыхательных путей становится причиной наследственного бронхита. Причиной некоторых форм наследственного мужского бесплодия являются дефекты жгутиков сперматозоидов.

 

Включения. Клеточные включения – это непостоянные структуры, не способные к самостоятельному существованию, которые клетка использует для своих нужд или выделяет в окружающую среду.

Различают трофические (резервные), секреторные и пигментные включения. К трофическим включениям относят, например, капли жира, глыбки гликогена, крахмальные зёрна. Гликогена очень много в клетках печени, а липидные гранулы в основном содержатся в специализированных жировых клетках.

Секреторные включения – мембранные вакуоли, содержащие биологически активные вещества, которые подлежат удалению путём экзоцитоза, поэтому их часто называют экскреторными гранулами. Таких гранул много в железистых клетках животных.

Пигментные включения, локализованные в цитоплазме, могут обеспечивать окраску ткани или органа. Примером пигментных включений являются гранулы меланина, обеспечивающие пигментацию.

Надмембранный комплекс животных клеток. Гликокаликс. Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный комплекс – гликокаликс, который выполняет важные функции. В его состав входят сложные органические вещества – гликопротеины и гликолипиды, а также надмембранные участки белков, погружённых в мембрану.

Гликокаликс выполняет ряд важных функций. В нём происходит внеклеточное пищеварение, там располагаются многие рецепторы клетки, и с помощью гликокаликса некоторые клетки контактируют друг с другом.

Мембранный транспорт. Одна из важных функций наружной клеточной мембраны – транспортная. Плазматическая мембрана обладает избирательной проницаемостью – она пропускает только определённые вещества и молекулы. Выделяют пассивный и активный транспорт через мембрану.

Пассивный транспорт. Этот вид транспорта осуществляется без дополнительных затрат энергии. К нему относят диффузию и ионный транспорт. Диффузия – это транспорт через мембрану веществ из зоны высокой концентрации в зону низкой концентрации. Этот процесс не нуждается в энергии, он идёт относительно медленно и прекращается, когда концентрация веществ по обе стороны мембраны уравнивается. Скорость диффузии и сама возможность транспорта веществ через мембрану зависит (помимо концентрации) от ряда других факторов: температуры, размера молекул, способности растворяться в липидах. Жирорастворимые вещества легко проходят через липидные слои, водорастворимые – с трудом. В мембране существуют специальные каналы, образованные белковыми молекулами, через которые и происходит диффузия. Ионный транспорт – это разновидность пассивного транспорта для заряженных ионов. Транспорт ионов через мембрану осуществляется либо сквозь специальные ионные поры, либо с помощью переносчиков.

Активный транспорт. Если диффузия продолжается достаточно долго, это может привести к тому, что по обе стороны мембраны концентрация веществ выравнивается. Для клетки это равнозначно смерти – в норме состав цитоплазмы и состав межклеточной жидкости должны сильно различаться. Поэтому существует система активного транспорта, благодаря которому перенос молекул происходит против градиента концентрации (из зоны низкой концентрации в зону высокой). Активный транспорт осуществляют специальные белковые мембранные комплексы, так называемые ионные насосы, работающие с затратой энергии. До 40 % всей энергии, вырабатываемой клеткой, идёт на эти транспортные расходы.

Транспорт в мембранной упаковке (эндо– и экзоцитоз). В отличие от ионов и мелких молекул, макромолекулы сквозь клеточную мембрану не проходят. Их перенос происходит путём эндоцитоза. Происходит выпячивание наружной плазматической мембраны, охватывающее внеклеточный материал. Образуется вакуоль, которая погружается в глубь цитоплазмы клетки. Такой процесс впервые был открыт российским учёным, лауреатом Нобелевской премии Ильей Ильичом Мечниковым и назван фагоцитозом. Процесс захвата клеткой капелек жидкости получил название «пиноцитоз».

Процесс, обратный эндоцитозу, – выведение из клеток каких – либо веществ и продуктов, называют экзоцитозом. На базе мембранного транспорта основан процесс выделения секретов и гормонов клетками. И эндо-, и экзоцитоз являются энергозатратными процессами, поэтому относятся к активному транспорту.

 

Date: 2015-12-11; view: 814; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию