Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Контрольная работа № 1. 101. Материальная точка движется по окружности со скоростью меняющейся по закону V = At (А = 4 м/с)





101. Материальная точка движется по окружности со скоростью меняющейся по закону V = At (А = 4 м/с). Найти тангенциальное аτ, нормальное аn, и полное а ускорения точки в момент времени, когда она сделает первый оборот.

102. Камень брошен с вышки в горизонтальном направлении с начальной скоростью Vо = 10 м/с. Определить скорость V, тангенциальное аτ и нормальное аn ускорения камня в конце второй секунды движения. Сопротивлением воздуха пренебречь.

103. Зависимость пройденного телом пути от времени задается уравнением s = A - Bt + Ct2 + Dt3 (A = 6 м, В = 3 м/с, С = 2 м/с2, D = 1 м/с3 ). Определить для тела в интервале времени от t1 = 1 c до t2 = 4 c: 1) среднюю скорость; 2) среднее ускорение.

104. Материальная точка движется прямолинейно с начальной скоростью V0 = 10 м/с и с постоянным ускорением а = -5 м/с2. Определить, во сколько раз путь DS, пройденный материальной точкой, будет превышать модуль ее перемещения Dr спустя t = 3 с после начала отсчета времени.

105. Диск радиусом R = 20 см, находящийся в состоянии покоя начал вращаться с постоянным угловым ускорением ε = 0,4 рад/с. Найти нормальное аn тангенциальное аτ и полное а ускорения точек на окружности диска в конце третьей секунды после начала движения

106. Тело брошено под углом a = 30° к горизонту со скоростью = 30 м/с. Каковы будут нормальное аn и тангенциальное аt ускорения тела через время t = 1 с после начала движения?

107. Материальная точка движется по окружности с постоянной угловой скоростью w = p/6 рад/с. Во сколько раз путь DS, пройденный точкой за время t = 4 с, будет больше модуля ее перемещения Dr?

108. Материальная точка движется в плоскости ХУ, согласно уравнениям Х = А11t+С1t2 и У = А22t+С2t2, где В1 = 7 м/с, С1 = -2 м/с, В2 = -1 м/с, С2 = 0,2 м/с2. Найти скорость и ускорение точки в момент времени t = 5 с.

109.Движение точки по кривой задано уравнениями Х = Аt2 и У = Вt, где А=0,5 м/с, В=2 м/с. Найти уравнение траектории точки, ее скорость V и полное ускорение а в момент времени t =2 с.

110. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением e. Определить тангенциальное ускорение аt точки, если известно, что за время t = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn = 2,7 м/с2.

 


 

111. В деревянный шар массой m 1 = 2 кг, подвешенный на нити длинной L = 1,8 м, попадает горизонтально летящая пуля массой m 2= 9 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол a = 12°? Размером шара пренебречь. Удар пули считать прямым, центральным.

112. Шар массой m 1= 1 кг движется со скоростью V 1 = 4 м/c и сталкивается с покоящимся шаром массой m 2 = 3кг. Каковы скорости U 1 и U 2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.

113. Два пластелиновых шарика массами m 1 = 50 г и m 2 = 90 г подвешены на нитях длиной L = 70 см. Первоначально шарики соприкасаются между собой, затем больший шарик отклонили на угол α = 60о и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h на которую поднимутся шарики после удара; 2) энергию Δ Т израсходованную на деформацию шаров при ударе.

114. Неподвижная молекула распадается на два атома, причем масса одного атома в два раза больше массы другого. Найти кинетические энергии Т 1 и Т 2 атомов, если их суммарная кинетическая энергия Т =0,016 нДж.

115. Определить КПД h неупругого удара бойка массой m 1= 0,5 т, падающего на сваю массой m 2 = 120 кг. Полезной считать энергию, затраченную на вбивание сваи.

116. Шар массой m 1= 4 кг движется со скоростью V 1 = 5 м/с и сталкивается с шаром массой m 2 = 6 кг, который движется ему навстречу со скоростью V 2 = 2 м/с. Определить скорости U 1 и U 2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

117. Шар массой m 1 = 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m 2 большего шара. Удар считать абсолютно упругим, прямым, центральным

118. Шар массой m 1= 5 кг движется со скоростью V 1= 1 м/с и сталкивается с покоящимся шаром массой m 2 = 2 кг. Определить скорость U шаров после абсолютно неупругого удара. Найти энергию Δ Т, израсходованную на деформацию шаров при ударе. 119. При разрыве снаряда, летящего со скоростью V = 600 м/с, образовались три равных осколка с равными массами m=12 кг. Суммарная кинетическая энергия всех осколков Т =32 кДж. Какую наибольшую скорость может приобрести один из осколков? Вращением осколков пренебречь.

120. Молотом массой m 1 = 5 кг ударяют по небольшому куску железа, лежащего на наковальне массой m 2 = 120 кг. Определить КПД η удара. Полезной считать энергию, идущую на деформацию железа.


 

121. На обод маховика диаметром D = 60 см намотан шнур, к концу которого привязан груз массой m = 2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t = 3 с приобрел угловую скорость w = 9 рад/с

122. К шкиву сплошного маховика диаметром D = 75 см и массой m = 40 кг приложена касательная сила F = 1 кН. Определить угловое ускорение e и частоту вращения n маховика через время t = 10 c после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь.

123. На сплошной блок радиусом R = 6 см намотан шнур, к которому привязан груз массой m = 0,5 кг. Опускаясь равноускоренно, груз прошел путь s = 1,5 м за время t = 4 с.Определить момент инерции Ј блока.

124. Нить с привязанными к ее концам грузами массами m 1 = 50 г и m 2 = 60 г перекинута через блок диаметром D = 4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение e = 1,5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь.

125. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению j = Аt+Bt3, где А = 2 рад/с, В = 0,2 рад/с3. Определить вращающий момент М, действующий на стержень через время t = 2 с после начала вращения, если момент инерции стержня J = 0,048 кг×м2.

126.Через блок, имеющий форму диска массой m = 0,4 кг, перекинут шнур, к концам которого подвешены грузы массами m 1 = 0,3 кг и m 2 = 0,7 кг. Определить силы натяжения Т 1 и Т 2 шнура по обе стороны блока. Массой шнура пренебречь,трение в оси блока отсутствует.

127. Определить момент силы М, который необходимо приложить к блоку, вращающемуся с частотой n = 12 с-1, чтобы он остановился в течение времени Dt = 8с. Диаметр блока D = 30см. Массу блока m = 6 кг считать равномерно распределенной по ободу.

128. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой - вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением а = 3,6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь.

129.На сплошной блок радиусом R = 10 см, момент инерции которого Ј = 0.042 кг·м2, намотана легкая нить, к концу которой прикреплен груз массой m = 0,4 кг. До начала вращения блока высота h груза над полом cоставляла 1,8 м. Определить: 1) силу натяжения нити во время движения; 2) время опускания груза до пола; 3) кинетическую энергию груза в момент удара о пол

130. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами m 1 = 0,2 кг и m 2 = 0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг. Силами трения и проскальзывания нити по блоку пренебречь.

131. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m = 5 кг каждая. Расстояние от каждой гири до оси скамьи L 1= 70 см. Скамья вращается с частотой n 1 = 1 с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до L 2 = 20 см? Момент инерции человека и скамьи (вместе) относительно оси J = 2,5 кг×м2.

132. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью w 1 = 4 рад/с. С какой угловой скоростью w 2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кг×м2. Длина стержня L = 1,8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы.

133. Платформа в виде диска диаметром D = 3 м и массой m 1= 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью w 1 будет вращаться эта платформа, если по ее краю пойдет человек массой m 2 = 70 кг со скоростью V = 1,8 м/с относительно платформы.

134. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол j повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы m 1 = 280 кг, масса человека m 2 = 80 кг.

135. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью w 1 = 25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью w 2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол a = 180°? Момент инерции человека и скамьи равен 2,5 кг×м2, момент инерции колеса J = 0,5 кг×м2.

136. Однородный стержень длиной L = 1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 10 г, летящая перпендикулярно стержню и его оси. Определить массу M стержня, если в результате попадания пули он отклонился на угол a = 60°. Принять скорость пули V = 360 м/с.

137. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n 1 = 8 мин-1, стоит человек массой m 1 = 70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой n2 = 10 мин-1. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки.

138. На краю неподвижной скамьи Жуковского диаметром D = 0,8 м и массой m 1 = 6 кг стоит человек массой m 2 = 60 кг. С какой угловой скоростью w начнет вращаться скамья, если человек поймает летящий на него мяч массой m = 0,5 кг? Траектория мяча горизонтальна и проходит на расстоянии r = 0,4 м от оси скамьи. Скорость мяча V = 5 м/с.

139. Горизонтальная платформа массой m 1 = 150 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n = 8 мин-1. Человек массой m 2 = 70 кг стоит при этом на краю платформы. С какой угловой скоростью w начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека - материальной точкой.

140. Однородный стержень длиной L = 1,0 м и массой M = 0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на 2/3 L, абсолютно неупруго ударяет пуля массой m = 10 г, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол a = 60°. Определить скорость пули.

141. В баллоне вместимостью V = 15 л находится аргон под давлением р1 = 600 кПа и температуре Т1 = 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до р2 = 400 кПа, а температура установилась Т2 = 260 К. Определить массу m аргона, взятого из баллона.

142. Два сосуда одинакового объема содержат кислород. В одном сосуде давление р1 = 2 МПа и температура Т1 = 800 К, в другом р2 = 2,5 МПа, Т2 = 200 К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры Т = 200 К. Определить установившееся в сосудах давление р.

143. В сосуде объемом V = 10 л при температуре Т = 450 К находится смесь азота массой m =5 г и водорода массой m =2 г. Определить давление Р смеси..

144. Найти молярные теплоемкости С v и С р смеси кислорода массой m 1= 2,5 г и азота m 2 = 3 г.

145. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул газа, находящегося в сосуде вместимостью V = 3 л под давлением р = 540 кПа.

146. Молярная внутренняя энергия Um некоторого двухатомного газа равна 6,02 кДж/моль. Определить среднюю кинетическую энергию <eвр> вращательного движения одной молекулы этого газа. Газ считать идеальным.

147. Водород массой m = 2 г был нагрет на Δ Т = 100 К при постоянном давлении р. Найти: 1) количество теплоты Q, переданную газу; 2) работу А расширения газа; 3) приращение Δ U внутренней энергии газа.

148. 10 г кислорода находятся в сосуде под давлением р = 300 кПа и при температуре 20 оС. После изобарического нагревания газ занял объем V = 10 л. Найти количество теплоты полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении.

149. При изотермическом расширении 20 г азота, находившегося при температуре 17 оС была совершена работа А = 960 Дж. Во сколько раз изменилось давление газа при расширении?

150. Кислород массой m = 120 г занимает объем V 1= 80 л и находится под давлением Р 1= 200 кПа. При нагревании газ расширяется при постоянном давлении до объема V 2= 300 л, а затем его давление возросло до Р2 = 500 кПа при неизменном объеме. Найти изменение внутренней энергии Δ U газа, совершенную им работу А и теплоту Q, переданную газу. Построить график процесса.

151. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол a. Шарики погружают в масло. Какова плотность r масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков r0 = 1,5×103 кг/м3, диэлектрическая проницаемость масла e = 2,2.

152. Три одинаковых точечных заряда Q1 = Q2 = Q3 = 2 нКл находятся в вершинах равностороннего треугольника со сторонами а = 10 см. Определить модуль и направление вектора напряженности Е электрического поля, созданного зарядами в точке, равноудаленной от этих зарядов.

153. Точечные заряды Q1 = 30 мкКл и Q2 = - 20 мкКл находятся на расстоянии d = 20 см друг от друга. Определить напряженность электрического поля Е в точке, удаленной от первого заряда на расстояние r1 = = 30 cм, а от второго - на r2 = 15 см.

154. Тонкий стержень длиной l = 20 см несет равномерно распределенный заряд t = 0,1 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке, лежащей на оси стержня на расстоянии а = 20 см от его конца.

155. На расстоянии d = 20 см находятся два точечных заряда Q1 = -50 нКл и Q2 = 100 нКл. Определить силу F, действующую на заряд Q3 = -10 нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d.

156. По тонкому полукольцу радиуса R = 20 см равномерно распределен заряд с линейной плотностью t = 1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром полукольца.

157. Тонкий длинный стержень равномерно заряжен с линейной плотностью заряда τ = 10 мкКл/м. На продолжении оси стержня на расстоянии а = 20 см от его конца находится точечный заряд Q = 15 нКл. Определить силу F взаимодействия точечного заряда со стержнем.

158. К бесконечной равномерно заряженной вертикальной плоскости подвешен на нити одноименно заряженный шарик массой m = 60 г и зарядом Q = 0,5 нКл. Сила натяжения нити, на которой висит шарик, F = 0,8 мН. Найти поверхностную плотность заряда σ плоскости.

159. Заряженный медный шарик радиусом R = 0,6 см помещен в масло, плотностью ρ = 0,8·103 кг/м3. Найти заряд Q шарика, если в однородном электрическом поле напряженностью Е = 3,2 МВ/м, направленном вертикально вверх, шарик оказался взешенным в масле.

160. Поверхностная плотность заряда σ бесконечно протяженной вертикальной плоскости равна 300 мкКл/м2. К плоскости на нити подвешен заряженный шарик массой m = 12 г. Определить заряд Q шарика, если нить образует с плоскостью угол α = 30о.

161. Кольцо радиусом R = 10 см равномерно заряжено с линейной плотностью заряда τ = 600 нКл/м. Определить потенциал φ в точке, расположенной на оси кольца на расстоянии h = 10 см от его центра.

162. Электрон с кинетической энергией Т = 300 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической отрицательно заряженной сферы радиусом R = 15 см.Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если ее заряд Q =- 10 нКл.

163. Электрическое поле образовано положительно заряженной длинной нитью с линейной плотностью заряда τ = 0,25 мкКл/м. Какую скорость получит электрон под действием поля, приблизившись к нити с расстояния r 1 = 2 cм до расстояния r 2 = 0,5 см?

164.Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость v =105 м/с. Расстояние между пластинами d = 6,8 см. Найти разность потенциалов U между пластинами и поверхностную плотность заряда σ на пластинах конденсатора.

165. Найти потенциальную энергию П системы трех точечных зарядов, расположенных в вершинах равностороннего треугольника со стороной а = 15 см, если Q 1 =20 нКл, Q 2 = 30 нКл и Q 3 =- 15 нКл.

166. Тонкое кольцо радиусом R =10 см имеет равномерно распределенный зард Q 1 = 300 нКл. Какую работу надо совершить, чтобы переместить заряд Q 2 =5 нКл из центра кольца в точку, расположенную на оси кольца на расстоянии h =30 см от его центра?

167. Тонкое полукольцо заряжено отрицательно с линейной плотностью заряда τ =-140 нКл/м. Какую скорость получит электрон переместившись под действием электрического поля из центра полукольца в бесконечность?

168. Протон, начальная скорость v которого равна 150 км /с влетел в однородное электрическое поле напряженностью Е = 3·103 В/м так, что его вектор скорости совпал с направлением линий напряженности. Какой путь L должен пройти протон, чтобы его скорость удвоилась?

169. Металлический шар радиусом R =5 см заряжен равномерно с поверхностной плотностью заряда σ = 1 мкКл/м2. Шар окружен слоем парафина (ε = 2,0) толщиной d =2 см. Найти потенциал φ электрического поля на расстоянии: 1) r1=1 см; 2) r2= 6 см; 3) r3=10 см от центра шара. Построить график зависимости φ (r).

170. Электрон влетел в плоский конденсатор со скоростью v =6 Мм/с, направленную параллельно пластинам. Найти скорость электрона при вылете из конденсатора, если расстояние между пластинами d =10 мм, разность потенциалов U = 20 В, длина пластин L = 6 см.

171. Два источника тока с ЭДС E1 = 1,2 В и E2 = 2,6 В и внутренними сопротивлениями r 1= 0,5 Ом и r 2= 1,1 Ом соответственно соединены, как показано на рис.1.1. Найти разность потенциалов между точками (а) и (б).

172. Два источника тока с ЭДС E 1= 1,2 В и E 2= 2,6 В и внутренними сопротивлениями r 1= 0,5 Ом и r 2= 1,1 Ом соответственно и резистор R = 10 Ом соединены, как показано на рис.1.2. Найти силы токов в источниках и резисторе.

173. Три батареи с ЭДС E 1 = 12 В, E 2 = 6 В и E3 = 5 В и одинаковыми внутренними сопротивлениями r равными 2 Ом соединены одинаковыми полюсами. Определить силы токов I, идущих через каждую батарею.

174. При внешнем сопротивлении R1 = 8 Ом сила тока в цепи I1 = 0,8 А, а при сопротивлении R2 = 15 Ом сила тока I2 = 0,5 А. Определить силу тока Iк.з короткого замыкания источника тока.

175. Батареи имеют ЭДС E1 = 2,5 В и E2 = 1,0 В, резисторы R1= 10 Ом, R2= 5 Ом и R3= 2 Ом, сопротивление амперметра RА= 0,5 Ом (рис.1.3). Найти показания амперметра.

176. Два источника тока с ЭДС E1 = 2,0 В и E2 = 1,5 В и внутренними сопротивлениями r 1= 0,5 Ом и r 2= 1,4 Ом соответственно и резисторы R 1= 5 Ом и R2= 0,8 Ом соединены как показано на рис.1.4. Найти ток текущий через резистор R 1.

177. Батареи имеют ЭДС E1 = 72 В и E2 = 36 В, резисторы R1= 100 Ом, R2= 50 Ом и R3= 20 Ом (рис. 1.5). Найти показания амперметра.

268. ЭДС элементов E1 = 2,0 В и E2 = 1,5 В, резисторы R1= 10 Ом, R2= 5 Ом и R3= 2 Ом (рис.1.6). Найти токи I в ветвях цепи.

179. В сеть с напряжением U = 100 В подключили катушку с сопротивлением R1 = 2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U1 = 80 В. Когда катушку заменили другой, вольтметр показал U2 = 60 В. Определить сопротивление R2 другой катушки.

180. Батареи имеют ЭДС E1 = 2,0 В и E2 = 3,0 В, резистор R3= 1,0 кОм, сопротивление амперметра RА= 0,5 кОм (рис. 1.3). Падение потенциала на сопротивлении R1 равно U1= 1,2 В (ток через R1 направлен сверху вниз). Найти показания амперметра.

 

 

   
   

 

 


 

Date: 2015-11-15; view: 905; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию