Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Краткие исторические сведения о создании символического метода расчета цепей переменного тока





Чарльз Протеус Штейнмец (Steinmetz, Charles Proteus) (1865–1923), американский инженер-электротехник. Родился 9 апреля 1865 в Бреслау в Германии (ныне Вроцлав, Польша). Учился в университете Бреслау, окончил Высшую техническую школу в Цюрихе. В 1889 эмигрировал в США.

Работал на небольшой электротехнической фирме в Йонкерсе (шт. Нью-Йорк). Под влиянием владельца фирмы Р. Айкемейера заинтересовался электротехникой. Организовал лабораторию, где и выполнил большинство своих исследований. Прежде всего он занялся определением потерь мощности в магнитных материалах, использующихся в электрооборудовании, и получилэмпирическую формулу для расчета потерь на гистерезис (1890–1892). Это позволяло заранее учитывать потери мощности при расчетах трансформаторов, электродвигателей, генераторов переменного тока и других электрических устройств.

В 1892 Штейнмец сделал два доклада на эту тему на конференции в Американском институте инженеров-электриков. Работа сразу получила признание, а вычисленные им коэффициенты потерь на гистерезис были включены в электротехнические справочники.

Второе важное достижение Штейнмеца – разработка основ символического метода расчета цепей переменного тока, о котором он сделал доклад на Международном электрическом конгрессе в 1893. Метод быстро нашел практическое применение, чему немало способствовали многочисленные лекции на эту тему, прочитанные Штейнмецем, и его книгаМатематика для инженеров (Engineering Mathematics, 1910).

В 1893 фирма Айкемейера влилась в недавно созданную корпорацию «Дженерал электрик», где Штейнмец получил место инженера. Здесь у него появились более широкие возможности для занятий исследовательской работой и внедрения своих изобретений.

Вначале он участвовал в создании мощных генераторов для новой гидроэлектростанции на Ниагарском водопаде, предложив множество усовершенствований. Затем, занявшись изучением кратковременных изменений в электрических цепях, исследовал природу молнии и предложил способ защиты от нее линий электропередачи. Кроме того, он занимался проектированием и расчетами светотехнических устройств и крупных электрических машин.

Со временем Штейнмец занял пост технического руководителя компании «Дженерал электрик». В 1901 он был избран президентом Американского института инженеров-электриков, а через год стал профессором электротехники в Юнион-колледже.

Анализ электромагнитных процессов в электрических цепях переменного тока в общем случае возможен только с использованием представления токов, напряжений и параметров цепи комплексными числами. Это позволяет исключить тригонометрические функции из уравнений, описывающих электрическую цепь и сделать их линейными. Так как при этом все величины заменяются их изображениями или символами, то этот метод носит название символического.

Последовательность операций в символическом методе в общем случае следующая:

· преобразование всех величин и параметров электрической цепи в их изображения комплексными числами;

· преобразование исходной электрической цепи в символическую схему замещения, где все величины и параметры представлены изображениями;

· эквивалентные преобразования схемы замещения (если требуется);

· определение искомых величин в области изображений;

· преобразование искомых величин в оригиналы (если требуется).

Последняя операция не является обязательной, т.к. некоторые величины (амплитудные и действующие значения токов и напряжений, активные и реактивные составляющие и т.п.) не изменяются при обратном преобразовании.

Соединим последовательно лампу накаливания с сопротивлением R, батарею конденсаторов с емкостью С и катушку с большой индуктивностью L. Если данную цепь присоединить к зажимам генератора переменного тока, то лампа загорится, что свидетельствует о наличии электрического тока в цепи, несмотря на разрыв, существующий между изолированными друг от друга обкладками конденсатора.

Для цепи переменного тока с последовательным соединением R, L, С (см. рисунок) дифференциальные уравнения по второму закону Кирхгофа имеют вид:

 

Здесь ток во всех трех участках один и тот же:

Разности потенциалов на всех трех сопротивлениях имеют вид:


Решение системы дифференциальных уравнений можно существенно упростить, если перейти от дифференциальных уравнений к алгебраическим. Это можно сделать, изображая синусоидальные величины (i, u) в комплексной форме, т.е. в виде вектора на комплексной плоскости.

Рис 1 Вектор Um и его проекции.

Расположим под углом относительно оси абсцисс вектор Um, длина которого в масштабе равна амплитуде изображаемой величины. Положительные углы будем откладывать в направлении против часовой стрелки.

Проекции вектора на вертикальную ось мнимых величин в комплексной плоскости равны мгновенному значению напряжения.

Система векторов на комплексной плоскости называется векторной диаграммой. Вектора вращаются относительно центра координат с одной и той же скоростью и поэтому относительно друг друга их положение не меняется. Векторная диаграмма изображается неподвижной в заданный момент времени, определяемый начальной фазой какой-либо величины, например, для идеальных элементов R, L, С.

Рис 2.Векторные диаграммы для идеальных элементов R, L, C.

Сложение двух функций в тригонометрической форме трудоемко, но легко производится в векторной форме.

Рис 3.Векторные диаграммы сложения двух напряжений

В расчетах применяют три формы записи комплексных величин:

1) алгебраическая
2)тригонометрическая
3) показательная, учитывая

 

Символ j перед мнимой частью комплексного числа в алгебраической форме означает, что мнимая часть повернута по отношению к вещественной на угол 90° в положительном направлении (против часовой стрелки).
Переходы из одной формы записи в другие:


где

где

Представленная ранее система дифференциальных уравнений для цепи переменного тока с R, L, С в комплексном виде записывается следующим образом:

Используя выражения , запишем выражение для полного напряжения цепи:

где
- комплексное сопротивление;

- комплексная амплитуда напряжения;

- комплексная амплитуда тока.

При замене амплитудных значений на действующие получим закон Ома в комплексной форме:

Величину Z называют полным сопротивлением цепи переменного тока.
Первый закон Кирхгофа в комплексной форме:

Второй закон Кирхгофа в комплексной форме:

Векторная диаграмма напряжений для цепи с последовательным соединением R, L, C будет представлять собой прямоугольный треугольник.

Рис 4.Треугольник напряжений


Треугольники токов, сопротивлений и мощностей строятся аналогично




Рис. 5. Активная и реактивная мощности

Полная мощность S = UI;
активная мощность
реактивная мощность ,где


В треугольниках напряжений, токов, сопротивлений и мощностей угол сохраняет свое значение.


 

Date: 2015-10-19; view: 553; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию