Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вариация содержания радиоуглерода в живых организмах





ТРЕТЬЯ ГИПОТЕЗА Либби состоит в том, что содержание радиоуглерода в организме ОДНО И ТО ЖЕ ДЛЯ ВСЕХ ОРГАНИЗМОВ ПО ВСЕЙ ЗЕМЛЕ, то есть не зависит, например, от ШИРОТЫ и породы растения. С целью проверить эту гипотезу Андерсон (Чикагский университет), проведя тщательные измерения, получил, что НА САМОМ ДЕЛЕ СОДЕРЖАНИЕ РАДИОУГЛЕРОДА, КАК И СЛЕДОВАЛО ОЖИДАТЬ, КОЛЕБЛЕТСЯ [480], с. 191.

Образцы Геомагнитная широта Число распадов в минуту на 1 грамм
Белая ель (Юкон) 60 гр. с.ш. 14,84+-0,30
Норвежская ель (Швеция) 55 гр. с.ш. 15,37+-0,54
Ель обыкновенная (Чикаго) 53 гр. с.ш. 14,72+-0,54
Ясень (Швейцария) 49 гр. с.ш. 15,16+-0,30
Листья жимолости (США) 49 гр. с.ш. 14,60+-0,30
Сосновые ветки (США, 3,6 км над уровнем моря 44 гр. с.ш. 15,82+-0,47
Вереск (Северная Африка) 40 гр. с.ш. 14,47+-0,44
Дуб (Палестина) 34 гр. с.ш. 15,19+-0,40
Неизвестное дерево (Иран) 28 гр. с.ш. 15,57+-0,31
Ясень манчжурский (Япония) 26 гр. с.ш. 14,84+-0,30
Неизвестное дерево (Панама) 20 гр. с.ш. 15,94+-0,51
Древесина «хлорофора эксуельса» (Либерия) 11 гр. с.ш. 15,08+-0,34
Стеркулия (Боливия, 2,7 км над уровнем моря 1 гр. с.ш. 15,47+-0,50
Эбеновое дерево (Маршальские острова) 0 гр. 14,53+-0,60
Неизвестное дерево (Цейлон) 2 гр. ю.ш. 15,37+-0,49
Эвкалипт (Австралия) 45 гр. ю.ш. 16,31+-0,43
Тюлений жир (Антарктида) 65 гр. ю.ш. 15,69+-0,30

Таким образом, современная активность радиоуглерода в зависимости от географического расположения и породы дерева меняется от 14,03 (вереск в Северной Африке) до 16,74 (эвкалипт в Австралии) распада в минуту. Это дает отклонение содержания радиоуглерода от среднего значения на плюс-минус 8,5 %. Либби пишет: «На протяжении 10 лет, прошедших с тех пор, эти данные не были опровергнуты. Исключения составляют лишь районы развития карбонатных пород, где поверхностные воды растворяют и уносят значительное количество древнего углерода и понижают тем самым содержание углерода–14 по сравнению со средним значением, характерным для системы атмосфера — биосфера — океан в планетарном масштабе. Правда, такие случаи встречаются относительно редко (? — Авт.) и легко могут быть учтены» [480].

Выводы

Подведем некоторые итоги. Таким образом, реальная активность древних образцов может отличаться от некоторой средней величины по следующим причинам:

1. Изменение активности древесины во времени: плюс-минус 2 %.

2. Изменения интенсивности космических лучей (теоретическая оценка): плюс-минус 20 %.

3. Кратковременные изменения солнечной активности плюс 2 %.

4. Увеличение перемешивания воды в Мировом оке минус 2 %.

5. Колебания концентрации радиоуглерода в зависимости от местоположения и породы дерева: плюс-минус 8,5 %.

6. Изменения содержания радиоуглерода в образце за счет гниения:? (неизвестно).

7. Изменения содержания радиоуглерода в образце в процессе его химической очистки:? (неизвестно).

8. Изменение содержания радиоуглерода в обменном фонде за счет вымывания карбонатных геологических пород:? (неизвестно).

9. Изменение содержания радиоуглерода за счет крупных вулканических выбросов карбонатов во время извержений:? (неизвестно). Эта причина может существенно исказить радиоуглеродные датировки в окрестностях, близких к вулканам.

Например, в Италии, где есть вулканы Везувий и Этна.

Кроме того, не следует забывать ошибку в датировке, происходящую от разрыва во времени между, например, повалом дерева и использованием его древесины в исследуемом примете или строении. Наконец, следует учитывать неточность принятой величины периода полураспада С14 — в последней время ИСПРАВЛЕННОЙ ПОЧТИ НА 10 %, — и ошибки экспериментального измерения радиоактивности образца (учёт фона и т. п.). Мы не обсуждаем здесь эти ошибки, для уменьшения которых физики положили немало сил, поскольку после всего того, что теперь стало известно, нам представляется бессмысленным точно измерять величину, теоретическая НЕКОНТРОЛИРУЕМАЯ ОШИБКА которой может достигать, скажем, скромно, 10 %. ПРИ САМОМ ОПТИМИСТИЧЕСКОМ ПОДСЧЕТЕ ПОЛУЧАЕТСЯ, ЧТО НЕПРЕДСКАЗУЕМАЯ ОШИБКА В РАДИОУГЛЕРОДНОМ ДАТИРОВАНИИ МОЖЕТ ДОСТИГАТЬ ПЛЮС-МИНУС 1200 ЛЕТ.

Поэтому весьма странным выглядит благодушный вывод Б. А. Колчина и Я. А. Шера: «Подводя итог краткому обзору исследования вековых вариаций С14, следует отметить, что они не только не подрывают доверия к радиоуглеродной хронологии, а наоборот — увеличивают ее точность (?! — Авт.)» [414], с. 8. Более реальной точки зрения придерживается другой специалист по радиоуглеродным датировкам — С. В. Бутомо: «Ввиду ЗНАЧИТЕЛЬНЫХ КОЛЕБАНИЙ удельной активности С14 радиоуглеродные даты ОТНОСИТЕЛЬНО МОЛОДЫХ ОБРАЗЦОВ (ВОЗРАСТА ДО 2000 ЛЕТ) НЕ МОГУТ БЫТЬ ПРИНЯТЫ В КАЧЕСТВЕ ОПОРНЫХ ДАННЫХ ДЛЯ АБСОЛЮТНОЙ ХРОНОЛОГИЧЕСКОЙ ШКАЛЫ» [110], с. 29. А ведь с точки зрения «античности», в том числе и «древней» истории Египта, именно такие, сравнительно молодые по отношению к ГЕОЛОГИЧЕСКИМ временным масштабам, образцы и представляют большой интерес. Таким образом, некоторые специалисты по радиоуглеродному методу открытым текстом признают — правда, в специальной научной литературе, — что применение радиоуглеродного метода, в его современном состоянии, к датировке образцов возраста около двух тысяч лет или менее представляется весьма сомнительным.

Мы могли бы закончить на этом обзор по радиоуглеродному методу датирования, если бы не существование критики в адрес этого метода со стороны археологов и ряд странностей в поведении самих специалистов по радиоуглеродному методу. Некоторые примеры мы уже приводили выше. Первое, что бросается в глаза, — это полная уверенность авторов в незыблемости исторических датировок. Пишут так: «Возрасты образцов, насчитывающих до 5000 лет, хорошо (?! — Авт.) согласуются с историческими оценками» [986], с. 155. После всего того, что нам теперь становится известно, такие утверждения звучат по меньшей мере странно.

Либби писал: «Были предприняты дальнейшие исследования с образцами известного возраста… Результаты… охватывают истекший период в 5000 лет… Таким образом, общая надежность радиоуглеродного метода твердо доказана» [986], с. 135. Как мы уже демонстрировали, внедренный в общественное сознание миф о «совпадении» скалигеровской хронологии и радиоуглеродной хронологии покоится на весьма зыбких основаниях и при более близком знакомстве с предметом обнаруживает свою несостоятельность. Напомним здесь еще у раз слова самого Либби по этому поводу: «Одно из исключений выявилось тогда, когда мы вместе со специалистами известного Института ориенталистики Чикагского университета работали над материалами огромной коллекции, собранной Джеймсом X. Брэстедом в Египте, и вдруг обнаружилось, что третий объект, который мы подвергли анализу, оказался современным! Это была одна из находок коллекции, которая считалась, помнится, принадлежащей V династии. Да, это был тяжёлый удар» [478], с. 24. Как мы уже говорили, этот объект был тут же объявлен «подлогом». Об этом «курьезе» Либби сообщил. А о скольких «курьезах» он не сообщил?

Как мы уже продемонстрировали, калибровка радиоуглеродного метода была в значительной степени основана на скалигеровской хронологии. Желательно, наконец, проверить МОЖНО ЛИ СДЕЛАТЬ РАДИОУГЛЕРОДНЫЙ МЕТОД ДАТИРОВАНИЯ НЕЗАВИСИМЫМ ОТ ПИСЬМЕННЫХ ИСТОЧНИКОВ.

Либби, приведя таблицу современной активности углерода в различных породах, заявляет следующее: «Было показано, что нет сколько-нибудь значительных различий между исследованными образцами, собранными на различных широтах от полюса до полюса» [480], с. 191.

Но позвольте! Ведь разброс составляет плюс-минус 8,5 %, то есть БОЛЕЕ 700 ЛЕТ. Как же тогда можно пятью страницами ниже утверждать, что «вычисленное нами содержание углерода хорошо согласуется с ожидаемой величиной. Расхождение сводится только к допустимым ошибкам отсчета» [480], с. 196. Быть может, Либби был уверен, что читатели не поинтересуются подробностями таблицы Андерсона? Тот же Либби говорит: «Наши выводы могли бы оказаться неверными, если бы ошибки измеренных величин, самых разных по своему существу — интенсивности космических лучей, скорости перемешивания и глубины океанов, — были бы взаимосвязаны. Но поскольку этого нет, мы полагаем, что большая ошибка маловероятна» [480], с. 193.

Нам неясно, о какой малой вероятности здесь идет речь, поскольку величина интенсивности космических лучей, скорость перемешивания и другие физические величины, влияющие на первоначальное содержание радиоуглерода в образце в момент его выхода из обменного резервуара, — ВСЕ ЭТИ ВЕЛИЧИНЫ НЕ ЯВЛЯЮТСЯ СЛУЧАЙНЫМИ ВЕЛИЧИНАМИ, НАПРОТИВ, ОНИ ПРИНИМАЛИ ВПОЛНЕ ОПРЕДЕЛЕННОЕ ЗНАЧЕНИЕ. Если мы этих значений не знаем, а выбираем из какого-то интервала допустимых значений, то ОШИБКА ДАТИРОВАНИЯ РАДИОУГЛЕРОДНЫМ МЕТОДОМ БУДЕТ СЛАГАТЬСЯ ИЗ СУММЫ (!) ВСЕХ ОШИБОК, ПОЛУЧИВШИХСЯ ПРИ ОПРЕДЕЛЕНИИ ВСЕХ ИСХОДНЫХ ДАННЫХ ДЛЯ ОБРАЗЦА.

Либби пишет: «Несмотря НА ОГРОМНУЮ РАЗНИЦУ в интенсивности космических лучей на разных географических широтах (они значительно интенсивнее в северных и южных широтах, чем на экваторе), СЛЕДУЕТ ОЖИДАТЬ (? — Авт.), что радиоактивный углерод РАВНОМЕРНО распределен по всей планете» [478], с. 23. Между прочим, указанный эффект может приводить к «более древней» датировке образцов, например, в Египте.

Далее Либби пишет: «Совпадение возраста сердцевины с возрастом дерева показывает, что в сердцевине гигантской секвойи жизненные соки не находятся в химическом равновесии с клетчаткой и другими молекулами дерева. Иными словами, углерод центральной части древесины отложился там около 3000 лет назад, хотя само дерево было срублено всего несколько десятков лет назад!» [480], с. 195. Но уже через три года после этих слов Зюсс исследовал радиоактивность годичных колец и обнаружил отклонение радиоуглеродных дат от дендрохронологических и пришел к выводу… — как бы вы думали, какому? Наверное, что первоначальная гипотеза Либби неверна? Вовсе нет. Зюсс заявил, что в древности содержание радиоуглерода было выше, чем в настоящее время. Это порочный круг.

Аналогичный пример приводит и Л. С. Клейн [391]. Либби доказывает сначала достоверность радиоуглеродного метода с помощью исторической хронологии «Древнего» Египта, но когда в контрольных измерениях обнаружились расхождения, то Либби тут же предположил ошибочность египетской хронологии для этих образцов [391], с. 104. Точно так же Либби сначала подтверждал радиоуглеродный метод дендрохронологией, а в случае расхождений объяснял их тем, что древесные кольца могут образовываться по нескольку в год. Впрочем, не только Либби страдает отсутствием логики, когда ее присутствие ему невыгодно.

Открываем статью Колчина и Шера [414] и читаем: «Следовательно, даты, которые были вычислены в предположении неизменности содержания С14 в атмосфере сейчас и в древности, нуждаются в уточнении. Но значит ли это, что они недостоверны? Уместна такая аналогия» [414], с. 6. Далее говорится о том, что расстояние от Земли до Луны вычислялось в несколько этапов, причем на каждом из этапов это расстояние вычислялось все с большей точностью. Так, мол, и в радиоуглеродном методе дополнительные поправки только позволяют улучшать точность измерений. Может быть, в теорий; дело так и обстоит. Но в этой же статье мы с удивлением читаем на с. 4, что «период полураспада С14 составляет 5570 плюс-минус 30…», а на с. 8, что «было решено (? — Авт.), что более вероятное значение периода полураспада следует считать 5730 плюс-минус 40 лет». Вот так уточнение. Эта поправка составляет 160 лет!

М. Дж. Эйткин пишет: «Важной характеристикой всех методов является их выход, то есть доля углерода в оригинальном образце, преобразуемого в газовую фазу. Было бы желательно иметь 100–процентный выход, чтобы устранить всякую возможность того, что С14 переводится в газ с большей вероятностью, нежели С12, или наоборот» [986], с. 168. Кроме того, читаем: «Недостаток синтезов последних состоит в том, что только 10 % углерода образца переводится в бензол; это повышает вероятность ошибки, связанной с разделением изотопов» [986], с. 17. Вроде бы автор отчетливо понимает необходимость учитывать во всех химических реакциях эффект разделения изотопов. Но с другой стороны, в разделе 6.3, обсуждая вопросы пригодности образца для измерений, М. Дж. Эйткин пишет: «Древесный уголь и хорошо сохранившаяся древесина считаются наилучшими образцами: обмен в них маловероятен (? — Авт.), а единственно возможный тип разложения — это образование окиси или двуокиси углерода. Но этот процесс не имеет значения, так как он связан только с уходом углерода» [986], с. 149. Но ведь существует разделение изотопов! Следовательно, в процессе гниения содержание радиоуглерода в образце может измениться!

Совершенно непонятным для нас остается такое беспечное отношение некоторых специалистов к эффектам, существенно меняющим результаты измерений. Ряд таких эффектов мы уже приводили в общем списке. Мало того что имеются влияния, оценить которые действительно затруднительно в настоящее время. НО ВЕДЬ РЯД ОБСУЖДАЕМЫХ В ЛИТЕРАТУРЕ ЭФФЕКТОВ МОГУТ БЫТЬ С ПОМОЩЬЮ ЭКСПЕРИМЕНТОВ ПРОВЕДЕНЫ И ЧИСЛЕННО ОЦЕНЕНЫ. НЕ СУЩЕСТВУЕТ, НАПРИМЕР, ПОДРОБНОЙ СВОДКИ АКТИВНОСТИ СОВРЕМЕННЫХ РАЗЛИЧНЫХ ЖИВЫХ (И НЕЖИВЫХ) ОБРАЗЦОВ В ЗАВИСИМОСТИ ОТ:

1. ШИРОТЫ,

2. ДОЛГОТЫ,

3. БЛИЗОСТИ К ТЕМ ИЛИ ИНЫМ ГЕОЛОГИЧЕСКИМ И ГЕОГРАФИЧЕСКИМ ОБРАЗОВАНИЯМ НА СУШЕ И В ОКЕАНЕ,

4. ВЫСОТЫ НАД УРОВНЕМ МОРЯ,

5. КЛИМАТА и т. п.

БЕЗ ТАКОГО АНАЛИЗА ВООБЩЕ НЕПОНЯТНЫ БЕЗАПЕЛЛЯЦИОННЫЕ ЗАЯВЛЕНИЯ О ЯКОБЫ НЕЗАВИСИМОСТИ АКТИВНОСТИ ОБРАЗЦОВ ОТ МЕСТА ИХ ОБНАРУЖЕНИЯ И ДРУГИХ ХАРАКТЕРИСТИК.

Итак, приходится признать следующее:

1. Радиоуглеродный метод в его современном состоянии обладает точностью в плюс-минус 1000–2000 лет на образцах, возраст которых оценивается не более тысячи лет. Поэтому пока непригоден для датировки исторических образцов возраста 2000 лет и менее. То есть метод пока мало что может сказать о хронологии событий последних двух тысячелетий.

2. Радиоуглеродный метод нуждается как минимум в повторной градуировке, без опоры на скалигеровскую хронологию.

3. Другие физические методы датировки еще более грубы и, следовательно, пока ничего не могут сказать о датировке объектов возраста 2000 лет и менее.

4. Собственно археологические методы, без опоры на хронологию письменных источников, не дают абсолютных дат. И лишь в редких случаях эти методы могут определить относительную хронологию некоторых находок.

5. Скалигеровская хронология явно или неявно проникла в градуировки шкал археологических методов и даже физических методов, в том числе и радиоуглеродного метода. Это тем более ставит под вопрос применимость метода в его современном виде для датирования исторических объектов.

6. Как признают некоторые археологи (см. выше), бытует глубоко порочная практика предварительного ознакомления физических лабораторий, датирующих образцы радиоуглеродным методом, с априорным мнением археологов о приблизительном возрасте находки.

Date: 2015-10-18; view: 483; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию