Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава четвёртая





Основные приемы построения перспективных изображений, тождественных рисунку с натуры

Приемы построения перспективных изображений обычно изучаются на примерах архитектурных сооружений. И это не случайно. Изображения архитектуры наиболее ярко и показательно выявляют достоинства существующих методов, иллюстрируют общие принципы приемов построения и в известной мере позволяют судить об их недостатках. Если живописец свободно владеет правилами перспективы при перспективных построениях архитектурных сооружений и их деталей, то он так же уверенно сможет использовать соответствующие законы, изображая пейзаж, группы людей, автомашины и т. д.

 

Весьма характерно, например, что в картинах и фресках эпохи Возрождения перспективное изображение архитектуры было своеобразной традицией. Подтверждением этому служат многочисленные произведения Веронезе, Рафаэля, Леонардо да Винчи и других живописцев.

 

Переходя к изложению приемов перспективного построения, мы будем следовать указанной системе, как наиболее целесообразной и практически совершенной. Нами будут рассмотрены приемы перспективного построения отдельных зданий, ансамблей, интерьеров, а также некоторых предметов интерьера.

 

Эти примеры должны осветить основные принципы практического использования нового метода. Они должны также проиллюстрировать своеобразие и гибкость предлагаемой системы, возникшей на основе обобщения богатейшей практики рисунка с натуры. Эти примеры должны также выявить те существенные различия, которые возникают при построениях перспективных изображений предлагаемым методом и методом центральной проекции на плоскость. Такие различия особенно ярко бросаются в глаза в приводимых ниже сопоставлениях результатов построении с фотоснимками сооружений, выполненными с тех же точек зрения.

 

Творческое отношение к задачам перспективы, постоянное обращение к практике реалистического рисунка с натуры при одновременном использовании точных геометрических приемов, рекомендуемых теорией, — все это должно служить известной гарантией плодотворного применения предлагаемого метода.

 

Выбор точки зрения

Чтобы по перспективному изображению можно было составить верное впечатление о свойствах изображаемого объекта — его форме, величине и пропорциях, — необходимо соблюдать при построениях некоторые важные требования.

 

Большое значение, например, имеет правильный выбор точки зрения. При создании картины этот выбор осуществляют обычно, исходя из общих композиционных соображений и характера изображаемого сюжета. Положение точки зрения определяется при этом с учетом возможностей наилучшего раскрытия замысла художника.

 

Зритель должен наиболее полно и всесторонне охватить изображаемое действие и соответствующее окружение. Причем в зависимости от выбранной художником точки зрения зритель может оказаться или как бы непосредственным участником события или его наблюдателем. В первом случае выбор точки зрения обычно осуществляется с учетом реальных условий наблюдения, во втором — точка зрения может оказаться условной, как, например, в тех случаях, когда она располагается сверху для обеспечения более широкого поля зрения.

 

Напротив, при построении архитектурных перспектив, осуществляемых с целью проверки замысла архитектора, выраженного в проекте, всегда необходимо исходить из реальных условий восприятия. Определяя положение точки зрения, следует учитывать характер планировки и застройки участка, а также места наибольшего скопления народа.

 

Возможность построения с условных точек зрения, конечно, в данном случае не исключена. Так, например, в архитектурной практике широко применяются так называемые перспективы «с птичьего полета». Эти изображения служат как бы дополнительным пояснением ортогонального чертежа, особенностей планировки участка в целом. Относительная условность подобных изображений, появляющаяся в выборе положения точки зрения, ясна зрителю с первого взгляда.

 

Использование при перспективных построениях условных точек зрения, с которых зритель не может видеть здание в натуре, может нанести, однако, известный вред именно в тех случаях, когда подобные «нереальные» изображения представляются авторами проекта как реальный вид здания.

 

Эффектная перспектива, выполненная без учета действительных условий наблюдения, может ввести в заблуждение не только зрителей, пытающихся по изображению оценить художественные достоинства архитектурного сооружения — его пропорции, форму, общую композицию, — но и самого автора проекта. Поэтому нередко после возведения здания автор первый же бывает поражен возникшим несоответствием между художественным замыслом, получившим выражение в проекте, и действительным результатом восприятия.

 

Таким образом, выбор точки зрения должен всегда осуществляться с учетом тех конкретных требований, которые определяются общим композиционным замыслом художника или же соответствуют практическим целям построения перспектив процессе архитектурного проектирования.

 

При выборе положения точки зрения следует учитывать также величины зрительных углов, при которых требуется производить построения.

 

При этом необходимо отметить, что возможности правильной передачи действительности при больших углах зрения с помощью предлагаемого метода резко возрастают. Возможности эти значительно превышают общепринятые нормы ограничения зрительных углов, так как в данном случае эти пределы соответствуют тем конкретным возможностям, которыми располагает художник, рисуя с натуры.

 

Примерные величины углов зрения на объект, при которых можно с успехом осуществлять построения предлагаемым методом, можно быть доведены до 60-80°. Эти границы не исчерпывают, однако, еще всех возможностей. Изучение особенностей восприятия и рисунков с натуры показывает, что выбор максимального угла зрения при рисовании зависит в известной мере от характера общей формы объекта и его положения в пространстве. Так, увеличение угла зрения в горизонтальном направлении приводит к необходимости соответствующего сокращения вертикального угла. Например, панорамное изображение ряда зданий дает вполне удовлетворительные результаты при углах зрения, превышающих 100°. При этом, однако, угол в вертикальном направлении оказывается сокращенным до минимума, то есть до 15-20°.

 

При построении перспектив интерьера предельные углы зрения могут быть доведены одновременно до пределов 80° для вертикальных и 100° для горизонтальных направлений. По точности и правдивости такие изображения будут примерно соответствовать характеру перспективных построений, осуществляемых обычным методом при углах зрения в 50—60°.

 

Перспектива здания

Прежде чем описывать приемы перспективных построений различных объектов, укажем на некоторые характерные особенности практического использования предлагаемого метода. С этой целью разберем на конкретных примерах ход построения перспективы объектов простейшей формы.

 

Предположим, что требуется построить перспективу фасада здания, представленного на рисунке 52 в виде прямоугольной фигуры. Точка зрения O и положение фасада (линия AB) заданы в плане. Горизонт же совмещен с нижней гранью прямоугольника.

 

Первый этап перспективного построения — это определение положения проекционной поверхности в плане. Исходными условиями, которыми при этом необходимо руководствоваться, являются следующие: во-первых, вершина и центр проекционной поверхности должны всегда располагаться на оси, проходящей через точку зрения O, перпендикулярно к линии расположения фасада — в данном случае к прямой AB.

 

Во-вторых, точка зрения O должна находиться посередине радиуса, которым наносится след проекционной поверхности в плане.

 

В соответствии с этими условиями проводим на чертеже через точки O оси X и Y —первую параллельно, вторую перпендикулярно прямой AB. Окончив эти предварительные построения, радиусом 0,5 R вычерчиваем в произвольном масштабе (лучше всего в мелком) полуокружность с центром в точке O. В точках пересеченья с осью Y эта окружность определит положение вершины и центра K проекционной поверхности, что позволяет, поставив ножку циркуля в точку K, радиусом R нанести в плане след искомой поверхности.

 

Проведя далее через крайние точки фасада лучи AO и BO, получим проекцию прямой AB на следе проекционной поверхности в виде отрезка ab. Для удобства дальнейшего построения вместо криволинейного участка проекционной поверхности выгоднее воспользоваться картинной плоскостью, задавшись ее необходимыми размерами в более крупном масштабе. В соответствии с этим параллельно отрезку ab (точнее, хорде, стягивающей точки a и b) проводим прямую A0 B0 — след картинной плоскости в плане.

 

Далее построения осуществляются на основе общих принципов теории линейной перспективы, то есть путем проекции фасада на картинную плоскость. При этом могут быть использованы различные способы, из которых как простейшие и наиболее приемлемые в данном случае могут быть рекомендованы следующие.

 

Прежде всего, для построения перспективы требуется провести линию горизонта FD и перенести на нее проекцию продольного размера фасада — A0 B0. В данном примере для наглядности мы воспользовались приемом перенесения заданных точек на горизонтальную прямую FD с помощью циркуля, расположив его ножку в точке D пересечения линии горизонта и следа проекционной поверхности.

 

Чтобы определить перспективные размеры высот hА и hB в соответствующих точках A0 и B0, можно воспользоваться наличием на чертеже точки схода F, полученной при пересечении следа картинной плоскости с осью X. При этом необходимо учесть также и то, что высота фасада в точке M0 пересечения его картинной плоскостью окажется равной своей натуральной величине H.

 

Эти данные и позволяют произвести необходимые построения. На линию горизонта вначале переносятся точки F и M0, затем в точке M0 располагается основание отрезка H — натуральной высоты фасада, взятой в масштабе чертежа. Через вершину отрезка H в точку схода F проводится прямая, которая при пересечении с двумя перпендикулярами, восстановленными в точках A0 и B0, определит перспективные контуры фасада здания.

 

52. Пример перспективного построения плоскости фасада объекта прямоугольной формы

 

В тех случаях, когда воспользоваться точкой схода бывает затруднительно, например, при ее расположении за пределами чертежа, можно обратиться к другому приему построения, используя для этой цели боковую проекцию объекта и картинной плоскости.

 

В данном примере проекцией фасада здания будет являться отрезок H, наложенный перпендикулярно к оси Y на продолжении прямой AB. Искомые отрезки hA и hB также с проектируются в свою натуральную величину, заняв аналогичное положение между осью Y и лучом, проходящим через вершину отрезка H. Причём высоты эти окажутся расположенными на прямых, проходящих через точки A0 и B0 параллельно оси X.

 

Зная горизонтальную проекцию фасада AB и проекционные размеры высот hA и hB,произвести дальнейшее построение изображения уже не составляет большого труда.

 

Оба описанных выше способа определения перспективных размеров высот мы будем применять и в дальнейшем при построении более сложных объектов. Первый — при наличии на чертеже точки схода для группы горизонтальных прямых, второй — при ее отсутствии или же при необходимости получения большего числа проекций вертикальных размеров.

 

Следует сказать также о некоторых приемах перспективного подразделения плоскости фасада в продольном направлении, к которым нам придётся неоднократно обращаться при последующих построениях. Среди этих приемов следует указать, прежде всего, на простейший случай метрического членения фасада с помощью диагоналей, которые всякий раз при пересечении определяют перспективное положение центра прямоугольника, которому они соответствуют (рис. 53, а). Если же фасад расчленён на нечётное число метрических частей и использовать указанный способ не представляется возможным, то следует обратиться к приему так называемых делительных масштабов.

 

Предположим, например, что нам необходимо разделить фасад здания в продольном направлении на пять равных частей (рис. 53,6). В этом случае следует провести через вершину ближнего ребра прямую, параллельную линии горизонта и отложить на ней в произвольном масштабе отрезок AB — размер фасада здания, подразделенный на пять равных частей. Соединив далее крайнюю точку отрезка B с вершиной дальнего ребра фасада B0 и продолжив полученную прямую до горизонта, определим положение точки W. В эту точку проведем лучи из всех точек членения отрезка AB, которые и засекут искомое положение этих точек в перспективе.

 

53. Приёмы членения перспективы прямоугольника в заданном отношении

 

Аналогичным способом можно пользоваться и в тех случаях, когда необходимо определить положение каких-либо произвольно заданных точек, представленных на ортогональном чертеже (рис. 53, в). Так, к примеру, если требуется определить перспективное местоположение точек пик, нанесенных на фасаде или же на прямой AB, равной его длине, то, как и в предыдущем примере, располагаем отрезок AB параллельно линии горизонта и проводим луч B0, определяющий положение точки W. Затем проводим из заданных точек n и k лучи в точку W, которые засекают положение этих точек на прямой AB0.

 

Рассмотренные выше примеры касались приемов перспективного построения плоской прямоугольной фигуры. Однако изложенные выше принципы построения распространяются и на другие случаи перспективного изображения. В частности, они имеют непосредственное отношение к построению перспективных изображений объемных фигур. Обратимся к одному из таких объектов и рассмотрим в качестве примера построение контуров здания, имеющего форму параллелепипеда. На чертеже представлены план и фасад объекта, точка зрения O, а также расположена линия горизонта на 1/4 части высоты здания, считая от основания (рис. 54).

 

Особенность перспективного построения параллелепипеда выражается, прежде всего, в необходимости произвести построение не одного, как в предыдущей примере, а двух фасадов здания. В соответствии с этим при построении потребуется использовать не одну, а две проекционные поверхности для каждого фасада в дельности.

 

Исходя из этих условий, производим следующее построение. Проводим через точку зрения O оси X и Y, располагая их параллельно сторонам плана объекта.

 

54. Примеры перспективного построения объекта прямоугольной формы

 

55. Новое здание библиотеки В. И. Ленина. Схема перспективного построения

56. Схема перспективного изображения нового здания библиотеки имени В. И. Ленина

57. Перспективный вид нового здания библиотеки имени В. И. Ленина. Фотоснимок и перспектива, построенная рекомендуемым методом с той же точки зрения

 

Затем произвольно избранным радиусом, равным 0,5 R, из точки O вычерчиваем окружность, которая определит на осях X и Y положение центров K1 и K2 и вершины двух проекционных поверхностей. Проведя далее лучи AO, BO и CO, найдем проекции ab и a'c сторон плана на полученных поверхностях.

 

Расположенные изолированно, проекции эти оказываются, однако, разномасштабными, так как высота объекта H, расположенная в точке A, не получает при проекции на эти поверхности равных размеров.

 

Поэтому при замене этих поверхностей двумя соответственно параллельным, картинными плоскостями последние необходимо располагать таким образом, чтобы они пересекались в плане на луче, направленном к ближайшему от зрителя углу здания.

 

Такими плоскостями (точнее, их следами) в данном примере будут являться AB0 и AC0, точка пересечения которых в плане для удобства построения совмещена с точкой A — основанием ближнего к зрителю вертикального ребра здания.

 

Установив положение картинных плоскостей, переходим к построению перспективы объекта, которое осуществляется обычными приемами. Прежде всего, в верхней части рисунка проводим линию горизонта и располагаем на ней последовательно отрезки AB0, AC0 — проекции сторон плана AB и AC, а также отрезок C0F, определяющий положение точки схода F для бокового фасада параллелепипеда.

 

Так как ближнее к зрителю ребро фасада HA совпадает с линией пересечения картинных плоскостей, то естественно, что он получится на перспективе в натуральную величину. Поэтому, взяв отрезок HA, равный высоте фасада, располагаем его таким образом, чтобы линия горизонта проходила на высоте 0,25 H от основания ребра. Теперь, соединив концы отрезка HA с точкой F, получаем перспективный вид бокового фасада объекта, ограниченный высотами HA и hC.

 

Аналогичным образом можно было бы построить также перспективу второго фасада, если бы на чертеже имелась точка схода для горизонтальных прямых, параллельных оси X. Но так как эта точка находится за пределами чертежа, то для определения высоты hB следует воспользоваться боковой проекцией фасада, приняв при этом ось Y за линию горизонта. Искомый отрезок hB окажется заключенным между двумя лучами, идущими в точку O от вершин ближнего к зрителю ребра H. Место его расположения определяется при проведении через точку B0 прямой линии, параллельной оси X.

 

Перспективный размер отрезка hC, определенный нами ранее, может быть установлен также и описанным выше способом. Для этого необходимо провести два луча, идущих к вершине дальнего ребра бокового фасада, и затем определить величину заключенного между ними отрезка прямой, проходящей через точку параллельно оси X.

 

Полученные данные о перспективных размерах высот объекта позволяют завершить построение перспективы параллелепипеда.

 

С помощью описанных выше приемов строятся и архитектурные перспективы сооружений несложной формы. В качестве одного из подобных примеров paccмотрим перспективное построение нового здания библиотеки имени В. И. Ленина в Москве.

 

Выбранная для построения перспективы точка зрения расположена в плане у края тротуара на противоположной стороне Моховой улицы (рис. 55). Угол зрения в горизонтальной плоскости на объект равен 60°, а в вертикальной — около 30°. Высота расположения горизонта принята нормальной, то есть соответствующей высоте человеческого роста.

 

Переходя к построению, прежде всего определяем место и характер расположения двух картинных плоскостей AB0 и AC0, которые размещаем таким образом чтобы линией их пересечения служило ближнее к зрителю ребро объекта. Их расположение в плане определяем, как и в предыдущих примерах, с помощью соответствующих участков двух вспомогательных проекционных поверхностей вычерченных в мелком масштабе из центров K1 и K2.

 

Полученные при проекции перспективные размеры горизонтальных сторон здания AB0 и AC0 переносим с плана на перспективу, располагая их на линии горизонта (рис. 56). При этом если требуется, производим пропорциональное увеличение размеров в необходимое число раз. Затем в точке A0 перпендикулярно к горизонту размещаем натуральную высоту объекта HA с намеченными на ней делениями, соответствующими основным членениям фасада по вертикали. Через вершину отрезка HA проводим прямую в точку схода F, также перенесенную с плана. Прямая эта в пересечении с вертикалью, проведенной в точке C0, определит внешние очертания бокового фасада. Из точек деления ребра AA0 в точку F проводим также прямые, которые будут соответствовать основным горизонтальным членениям здания.

 

Для построения перспективы главного фасада определяем перспективные размеры дальнего ребра объекта — hB. С этой целью используем, как и в предшествующих примерах, боковой фасад объекта, расположенный на оси Y, как на линии горизонта (рис. 55). Проведя через точку B прямую, параллельную оси X, получаем на ней в створе между лучами, направленными к вершинам отрезка HA, искомую нами величину hB. Так как точка схода для горизонтальных членений главного фасада лежит далеко за пределами чертежа, то для удобства дальнейшего построения сносим с бокового фасада (с отрезка HA) на отрезок hB все точки, характеризующие расположение основных членений. Перенеся далее отрезок hB с чертежа плана на перспективу и расположив его в пункте B0 (рис. 56), соединяем его вершину и точки, отмечающие положение членений, с соответствующими точками отрезка HA.

 

Для завершения перспективного построения представленного объекта в общих массах требуется также расчленить его фасады в продольном направлении. Решить эту задачу можно следующим образом.

 

Через точку A на перспективном изображении проводим горизонтальную прямую. Затем откладываем на ней отрезки AB и AC, представляющие собой продольную и поперечную стороны плана, расчлененные на соответствующие части, соединив далее точку B с вершиной отрезка hB, а точку C с вершиной отрезка hC и продлив их до горизонта, получим точки W1 и W2. В эти последние и следует направить ряд лучей из точек, нанесенных на отрезках AB и AC. В пересечении с прямыми, проходящими через вершины отрезков HA, hB, и hC, эти лучи определят расположения вертикальных членений фасадов здания.

 

Полученная описанным выше путем схема может служить основой для успешного завершения перспективного построения. При этом могут быть использованы как рекомендуемые теорией линейной перспективы способы геометрического построения, так и приемы прорисовки деталей на глаз, которые при наличии известного опыта у рисующего всегда себя оправдывают на практике.

 

58. План и фасад дома Пашкова в Москве. Схема перспективного построения

59. Схема перспективного изображения дома Пашкова

60. Сопоставление фотоснимка и перспективного изображения дома Пашкова, построенного с применением нескольких точек схода

 

Перспективное изображение здания библиотеки, построенное на основе данной схемы, представлено на рисунке 57. Здесь же помещена фотография здания, выполненная с той же точки зрения. На фотоснимке здание выглядит чрезмерно удлиненным. Усиленный перспективный ракурс придает ему неестественный вид. Напротив, построенное рекомендуемым методом изображение передает вид здания более правдиво, позволяя зрителю составить более правильное впечатление о его пропорциях и размерах.

 

В дополнение к рассмотренному случаю приведем еще один пример построения перспективы объекта более сложной конфигурации — старого здания библиотеки имени В. И. Ленина, или так называемого дома Пашкова, построенного по проекту крупнейшего русского зодчего XVIII века В. И. Баженова. Точка зрения, как и в предыдущем примере, располагается на противоположной стороне Моховой улицы (рис. 58). Угол зрения на объект в горизонтальной плоскости равен 54°, а в вертикальной — около 27°, считая от горизонта.

 

Характерной особенностью формы дома Пашкова является его расчлененность на несколько самостоятельных частей — центральный объем здания с фонарем, два боковых портика и две соединяющие эти объемы галереи. При восприятии здания с заданной точки наблюдения фасадные плоскости этих объемов будут видны зрителю в различной степени ракурса. Ближние в меньшем, удаленные — в более сильном сокращении.

 

Для наиболее точной передачи указанных перспективных явлений следует учитывать эти особенности, определяя в процессе построения перспективы степень ракурсных сокращений для каждого из соответствующих элементов здания в отдельности.

 

Поэтому, проведя из точки K1, след проекционной поверхности и спроектировав на него план объекта, мы заменим полученную кривую не одной, а несколькими хордами, стягивающими дуги 1020, 2030, 3070 и так далее. Здесь же, пользуясь изображением бокового фасада здания, получим проекционные величины высот боковых портиков (10', 20', 80', 90'), главного объема (30' и 70'), высоты фонаря (50') и точек описанного вокруг него квадрата, используемого для построения перспективы окружности (40', 60'). Эти точки определяют положение вершин проекций соответствующих отрезков, общая высота которых отсчитывается от горизонта, то есть от оси Y.

 

Полученные таким путем проекционные размеры основных горизонтальных размеров и высот здания переносим на перспективу (рис. 59), где первые (точки 10, 20, 30, и т. д.) располагаем на линии горизонта в соответствующем порядке и с необходимыми интервалами, а вторые — перспективные размеры высот — откладываем на вертикальных прямых, проходящих через соответствующие точки, от линии горизонта. Соединяя далее точки 10' и 20', 30' и 70' и т. д., а также используя точку схода F для прямых, перпендикулярных к оси X, получаем на перспективе очертания общих контуров изображаемого объекта.

 

Продолжая построение, находим место некоторых промежуточных членений высот, определяющих положение основания дома Пашкова над горизонтом, высоту цокольного этажа, венчающих здание антаблементов и фронтов. Эти точки вместе с дополнительными данными о проекционном расположении некоторых промежуточных вертикальных членений, например, сторон центрального портика, позволяют получить перспективное изображение объекта в общих массах, как это показано на рисунке 59.

 

Дальнейшее построение сводится главным образом к последовательному уточнению и деталировке полученной схемы. В законченном виде такая перспектива представлена на рисунке 60 вместе с фотоснимком, выполненным с той же точки зрения. Сравнение этих изображений показывает, что применение рекомендуемого метода приводит к устранению усиленных ракурсов и перспективных сокращений, имеющих место на фотоснимке. Искривления же горизонтальных линий, возникшие в результате фрагментарного перспективного построения объемов здания, не бросаются зрителю в глаза.

 

Перспектива высотного сооружения

Рассмотренные примеры перспективных построений выполнялись, как мы видели, при вертикальных углах зрения, не превышающих 30-35°, считая от горизонта. В указанных пределах перспективные сокращения по вертикали практически незаметны, и поэтому они не учитывались при построениях.

 

Совсем иначе обстоит дело при изображении архитектурных объектов в сильных вертикальных ракурсах, когда, например, требуется получить перспективу отдельных фрагментов высотных сооружений при обозрении снизу. Здесь учет перспективных сокращений по вертикали для достижения правдивости подобных изображений совершенно необходим. Но так как построения, производимые с помощью наклонной картинной плоскости, не всегда дают в этих случаях положительные результаты, то следует обратиться к другой системе построения, опирающейся в своих основах на практику реалистического рисунка. В качестве примера, иллюстрирующего возможности предлагаемого способа, опишем ход построения перспективы верхних ярусов колокольни Ивана Великого в Московском Кремле.

 

Точка зрения, выбранная для построения, удалена от основания колокольни на тридцатиметровое расстояние. При этом угол зрения на вершину креста от горизонта составляет 64° (рис. 61). Однако в перспективе должна быть изображена лишь часть здания, начиная от завершения первого яруса, обозреваемая под вертикальным углом в 38°.

 

Построение перспективы начинаем с размещения на фасадном чертеже следа картинной поверхности I, который представляет собою часть эллипса, вписанного в прямоугольник с отношением сторон 1:2,2. Эта кривая позволяет нам получить проекционные размеры основных вертикальных элементов здания ярусов, купола, креста. Причем главными опорными пунктами при этом должны служить точки 1, 2…7, расположенные по внешнему, обращенному к зрителю контуру сооружения. Полученные таким путем размеры, помеченные на следе проекционной поверхности цифрами 10, 20…70, переносим на осевую линию перспективного изображения, которое нам предстоит построить (рис. 62).

 

61. План и фасад колокольни Ивана Великого. Схема перспективного построения

62. Схема перспективного изображения фрагмента колокольни Ивана Великого в сильном вертикальном ракурсе

 

63.Сопоставление фотоснимка и перспективного изображения фрагмента колокольни Ивана Великого, построенного рекомендуемым методом с той же точки зрения

 

Далее основная задача построения сводится к получению перспективных проекций нескольких наиболее характерных сечений ярусов сооружения. Три таких сечения расположены между соседними ярусами, а одно фиксирует пункт перехода от восьмигранной формы яруса к цилиндрической (рис. 61).

 

Для упрощения построения представим себе восьмигранные сечения соответствующих ярусов вписанными в круги. Чтобы найти правильные, неискаженные проекции этих фигур, установленную ранее проекционную поверхность использовать, однако, уже нельзя, так как с ее помощью можно определять лишь сокращения

вертикально расположенных элементов. Поэтому из произвольно заданного центра K на оси Y радиусом, равным 2OK, проведем новую вспомогательную поверхность II, на которую и спроектируем горизонтальные сечения всех ярусов. Для того однако, чтобы проекции сечений по своим размерам соответствовали установлений ранее сокращениям вертикальных элементов, их следует, пропорционально увеличив расположить вдоль следа первой проекционной поверхности, как это показано на чертеже.

 

Путь построения проекции каждого сечения в отдельности можно проиллюстрировать на примере одного из сечений, например AB. Прежде всего, на кривую I проектируется центр сечения — точка M. Затем через полученную точку M0, проводится прямая AB параллельно соответствующему участку ab проекционной поверхности II. Отрезок A0B0 и будет служить малой вертикальной осью эллипса, представляющего проекцию окружности, охватывающей сечение AB. Размер горизонтальной оси эллипса устанавливается путем проекции диаметра окружности C0'D0' на отрезок C0'D0', лежащий на вертикальной прямой, проходящей через точку M0.

 

Имея эти данные, откладываем вниз от точки 20 на перспективной схеме (рис. 62) отрезок A0B0, совмещая точки A0 и 20. При этом одновременно получаем положение перспективного центра — точку М0, позволяющего разместить горизонтальную ось эллипса C0'D0', размеры которой берем с плана. Если полученных четырех точек и положения перспективного центра эллипса оказывается недостаточно для проведения кривой, то тогда следует обратиться к рекомендуемым в подобных случаях приемам вписывания эллипса в перспективу квадрата. При этом, однако, следует помнить, что точка схода для боковых сторон такого квадрата будет находиться ниже линии горизонта. Ее точное местоположение может быть установлено при продолжении отрезка A0B0 до пересечения линии горизонта в точке F (рис. 61) и при последующем переносе отрезка A0F на перспективу. Последний откладывается по оси вниз от точки 20.

 

Описанным выше способом строятся также перспективы остальных окружностей, расположенных в заданных сечениях. Проведенные к полученным эллипсам касательные определят общие контуры объемов башни, как это видно на представленном чертеже (рис. 62). Дальнейшее построение сводится к вписыванию в цилиндры восьмигранных призм, к размещению промежуточных членений ярусов и к прорисовке деталей. Перспективное изображение ярусов башни в законченном виде представлено на рисунке 63. Рядом с этим изображением помещен фотоснимок, выполненный с той же точки зрения, что и осуществленное нами построение. Хотя здесь главная точка картины расположена в центре представленного кадра, завершение башни имеет ярко выраженную перспективно утрированную форму. Сооружение кажется нам непомерно вытянутым вверх.

 

Рассмотренный пример дает лишь общую принципиальную схему построения перспективы высотного сооружения. Эта схема на практике может несколько видоизменяться в зависимости от формы объекта, величины угла зрения и т. д. В частности для упрощения построений отдельные участки криволинейной проекционной поверхности могут заменяться плоской картиной, а при значительных вертикальных углах может быть использована так же точка схода для вертикалей.

 

При построении перспективы ансамбля необходимо стремиться не только к правильности перспективного изображения отдельных объектов, но также соблюдать верность объемно-пространственной передачи соотношений, определяющих целостное впечатление зрителя о пропорциях, размерах и расположении окружающих сооружений.

 

Предположим, что необходимо построить перспективу площади, окруженной с трех сторон застройкой равной высоты (рис. 64). Причем часть площади ABCD, попадающая в поле зрения, представляет собой в плане прямоугольник правильной формы.

 

Прежде всего, требуется установить, в каком перспективном сокращении будут находиться ближние к зрителю высоты боковой застройки, помещенные в точках A и D, а также соответствующее расстояние между ними. Для этого необходимо использовать проекционную поверхность, вершина которой и центр K1, располагаются на оси Y, перпендикулярной к прямой AD. Кривизна следа этой поверхности несколько больше обычной, так как точка зрения O находится не посередине радиуса, а делит его в отношении 2:3 (2/5R и 3/5R).

 

Проекции hA и hD указанных высот HA и HD получаем на разрезе в верхней части чертежа. Установив проекционную высоту ближних к зрителю частей застройки, приступаем к определению перспективных размеров высот дальнего плана HB и HC, размещенных в точках B и C. С этой целью вычерчиваем след проекционной поверхности, обращенной своей вершиной к прямой AB, то есть к линии боковой застройки, находящейся в меньшем ракурсе. Как и у первой кривой, точка O делит здесь радиус в отношении 2:3. Проведя далее отрезок A0B0 параллельно участку a'b' вычерченной кривой, получаем проекционную

поверхность для определения перспективных высот боковой застройки левой стороны площади. При этом на вертикальной прямой, проходящей через точку B0, находим на разрезе искомую высоту hB.

 

64. Схема перспективного построения застройки площади прямоугольной формы без применения точек схода

 

Для определения перспективных размеров застройки фронтальной стороны площади BC может быть использован участок bc первой проекционной поверхности, предназначенной для проекции прямых, параллельных оси X. Однако месторасположение хорды bc должно быть изменено. Она должна занять положение отрезка B0C0, что обеспечит проекционное соответствие размеров высот сторон AB и BC.

 

Установленное положение точек C0 и D0 позволяет определить место последней проекционной поверхности, проходящей через эти точки. Таким образом, и итог, получаем взаимосвязанную систему проекционных поверхностей, две из которых A0D0 и B0C0, как указывалось ранее, служат для определения проекционных размеров горизонтальных отрезков, а две другие — A0B0 и C0D0 — для вертикальных.

 

Чтобы получить перспективное изображение площади в схематических очертаниях (рис. 65. а), достаточно перенести с плана на перспективу размеры A0b, B0C0 и cD0, расположив их последовательно вдоль линии горизонта, а затем в соответствующих точках A0, B0, C0 и D0 разместить высоты hA, hB, hC и hD,взятые с разреза.

 

Смысл осуществленного построения можно пояснить следующим образом. Застройка площади проектируется на три вертикальные картинные плоскости A0B0, B0C0 и C0D0. Затем картина выпрямляется при одновременном сокращении продольных размеров крайних плоскостей A0B0 и C0D0 до величины отрезков A0b и cD0. Эти отрезки, принадлежащие вспомогательной проекционной поверхности A0D0, определяют проекции горизонтальных размеров боковых сторон AB и CD.

 

Исходя из указанных принципов, можно рекомендовать и другие приемы перспективных построений, в частности способ с использованием точек схода для горизонтальных прямых боковой застройки. Так, построение перспективы, представленной на рисунке 65, можно осуществить, продлив прямые A0B0 до пересечения с осью Y в точках F1' и F2' (рис. 66), являющихся точками схода для проекций горизонтальных прямых, параллельных оси Y. При выпрямлении картины с одновременным сокращением отрезка A0B0 до величины A0B и отрезка C0D0 до cD0, необходимо сократить в той же пропорции отрезки B0F2'и C0F2', определяющие положение точек схода F1'F1 и F2'F2. С этой целью проводим прямые F1'F1, и F2'F2 соответственно параллельно отрезкам B0b и C0c.

 

65. Схемы площади, поясняющие ход перспективного построения: а — без применения точек схода; б — с применениями двух точек сход

 

Затем переносим на перспективу отрезок B0C0, располагая его на линии горизонта (рис. 65, б). Аналогичным образом размещаем отрезки A0F1 и D0F2, совмещая при этом точку b первого отрезка с B0, а точку c второго — с C0. Причем на отрезке B0C0 намечаем положение точек схода F1 и F2, а на отрезках A0b и cD0 — точек m и n, определяющих пункты размещения натуральных высот. Проводя через вершины и основания высот Hm и Hn лучи в соответствующие точки схода F1 и F2, а также начертив вертикальные прямые в точках А0, B0, C0 и D0, получаем искомую перспективную схему застройки.

 

Теперь после ознакомления с приведенными схемами можно обратиться к конкретным примерам из архитектурной практики. Первым из них является ансамбль Пропилеев — входа на Афинский акрополь (рис. 67). Точка зрения расположена внизу, у подножия лестницы, ведущей к Пропилеям. По сторонам возвышаются мощные крепостные стены, а справа на первом плане — храм Ники Аптерос, Бескрылой Победы.

 

Выбор пал на этот объект не случайно.

 

Рисунок 66. Схема перспективного построения застройки площади с использованием точек схода

 

Дело в том, что изображение Пропилеев с данной точки зрения уже неоднократно воспроизводилось в книгах и учебниках по архитектуре (рис. 68, внизу). Такое искаженное, деформированное изображение имеется, в частности, и во «Всеобщей истории архитектуры», выпущенной Академией архитектуры СССР. О недостоверности такой перспективы можно судить хотя бы по неестественным очертаниям храма Ники, у которого правый, более удаленный от зрителя, чем левый, угол фасада оказался приподнятым вверх самым неестественным образом.

 

67. План и разрез Пропилеев Афинского акрополя. Схема перспективного построения

 

68. Перспектива входа в Афинский акрополь; вверху построенная предлагаемым методом, устраняющим проявление перспективных искажений; внизу — построенная существующим методом и приводимая в качестве иллюстрации в учебниках по архитектуре

69. План и фасад Красной площади в Москве. Схема перспективного построения

 

Необходимо отметить, что это не ошибка геометрического построения, а, напротив, результат точного, досконального воспроизведения проекции данного сооружения на фронтальную плоскость, расположенную параллельно фасаду портика Пропилеев. Ни французский исследователь архитектуры О. Шуази, выполнивший построение и поместивший впервые его в своей книге, ни авторы «Всеобщей истории архитектуры» ни словом не обмолвились о значительном несоответствии представленной схемы действительному виду этого ансамбля в натуре. Более того, ссылаясь на это изображение, они стремились, вероятно, подкрепить свои описания конкретным образным воздействием на читателя. Такие ссылки, однако, могли вызвать у читателя или, у учащегося лишь ложное, противоречивое представление о действительных достоинствах этого известнейшего комплекса античных построек.

 

70. Сопоставление фотоснимка и перспективного изображения Красной площади, построенного с учетом особенностей зрительного восприятия

Построение перспективы начинаем с размещения системы проекционных поверхностей — вспомогательной A0D0 и трех проекционных A0B0, B0C0 и C0D0 (рис. 67). Затем проектируем на них ряд наиболее характерных для построения точек плана, а также устанавливаем положение фокусов F1 и F2. Все эти построения осуществляются так же, как и в рассмотренном нами выше примере (рис. 64-66).

 

Вместе с этим здесь имеются и некоторые особенности. Они выражаются в использовании еще одной, дополнительной картинной плоскости P0Q0 (рис. 67), предназначенной для получения проекции обращенного к зрителю фасада храма Ники. Располагается эта плоскость параллельно соответствующему участку следа проекционной поверхности с центром в точке K3, лежащей на прямой, перпендикулярной линии расположения фасада храма, то есть к отрезку PQ. Положение точки схода F3 для боковой стороны храма определяется путем продления прямой K3O до плоскости C0D0. После этого полученная точка F3', так же как и другие точки отрезка C0D0, переносится на прямую D0F2 лучами, параллельными отрезку C0c. Аналогичным образом переносятся также точки и с отрезка A0B0 на прямую A0F1.

 

Перспективные высоты элементов определяются обычным порядком с помощью продольного разреза. Так, например, при нахождении высоты расположения верхней точки фронтона Пропилеев последняя проектируется на плоскость B0C0, отстоящую от точки зрения O на расстояние L1. Точка же P у основания ближнего к зрителю угла храма Ники Аптерос (см. план и разрез) проектируется уже на плоскость C0D0 в пункт P0', лежащий на вертикали, отстоящей от оси X на расстояние L2, и т. д.

 

Полученная в результате подобного построения перспектива (рис. 68, вверху) передает вид Пропилеев, а также отношения масс и объемов ансамбля более реально, чем изображение, построенное на основе обычного метода центральной проекции на плоскость (рис. 68, внизу).

 

Вторым примером построения перспективы ансамбля является изображение Красной площади в Москве. Точка зрения в плане расположена у угла здания Исторического музея со стороны Никольской башни (рис. 69). В поле зрения попадает большая часть кремлевской стены, в то время как застройка левой стороны видна лишь частично. Эта особенность в выборе зрительного угла предопределяет известное своеобразие в расположении системы проекционных поверхностей.

 

Как известно, вспомогательная проекционная поверхность A0D0, помимо функции, относящейся к выявлению проекционных размеров горизонтальных отрезков, служит также для определения перспективных сокращений ближних к зрителю высот боковой застройки, размещенных в точках A и D. И если в предыдущих примерах эти высоты располагались на прямой AD, перпендикулярной продольной оси Y, то в данном случае прямая AD пересекает эту ось под острым углом. Поэтому, чтобы соотношения перспективных проекций высот в точках A и D не оказались нарушенными, центр K1, вспомогательной поверхности необходимо располагать не на оси Y, а на прямой, пересекающей отрезок AD под углом 90°. В данном случае эта прямая совпала с лучом OD, чего, конечно, могло и не быть.

 

Проведя из точки K1, след проекционной поверхности A0D0, располагаем затем остальные три проекционные поверхности, предварительно ограничив для удобства построения контуры площади прямой BC, проходящей перпендикулярно оси Y.

 

Далее построение проводим в обычном порядке, пользуясь продольным фасадным изображением площади для нахождения проекционных размеров основных высот. Мелкие элементы и детали застройки прорисовываются от руки.

 

При этом проекционная точность построения не должна, однако, противоречить правдивости изображения элементов. Так, например, из того, что Спасская башня проектируется частично на плоскость B0C0, а другой своей частью на плоскость C0D, еще не следует, что ее фронтальные элементы должны иметь ломаные контуры. При построении перспективы башни следует исходить из расчета проекции ее фронтальной стороны на продолжение плоскости B0C0, а горизонтальные отрезки, идущие в продольном направлении, следует вести в общую точку схода F2. Аналогичным образом следует поступать и в других подобных случаях, например, при построении перспективы горизонтальных отрезков, идущих параллельно оси X, фасада башни, расположенной у Мавзолея. Точка схода для этих отрезков устанавливается, исходя из продолжения проекционной плоскости C0D0, или точнее — проекционной поверхности, проведенной из центра K3 и т. д.

 

В законченном виде перспектива Красной площади представлена на рисунке 70 вместе с фотоснимком, выполненным с той же точки зрения. На фотографии сооружения дальнего плана выглядят чрезмерно сокращенными. Если по этому фотоснимку попытаться представить себе размеры изображенной площади, а затем вспомнить ее действительный вид, то можно прийти к выводу, что на указанном изображении площадь кажется значительно больше и длиннее. Примерно такое же различие имеет место и при сравнении фотоснимка с перспективой, тождественной рисунку с натуры.

 

Интерьер в перспективе

С изображением в перспективе внутреннего вида различных помещений, комнат, залов и т. д. приходится часто иметь дело, как художникам, так и архитекторам. В ряде случаев по необходимости такие построения случается выполнять при больших углах зрения, что приводит к возникновению искажений, резко бросающихся в глаза. Качество подобных изображений особенно страдает вследствие того, что даже небольшие помещения на перспективах и фотоснимках выглядят часто коридорами или обширными залами.

 

Как пример иллюстрации такого искажения, приводим две перспективные схемы помещения, первая из которых построена обычным методом, вторая — предлагаемым (рис. 71). На обоих изображениях представлена перспектива комнаты обычных размеров (15-18 м2), с торцовой стеной в виде квадрата. В поле зрения попадает лишь часть комнаты, представляющая собой в плане прямоугольник ABCD, также близкий по форме к квадрату. Построение производилось с одной и той же точки зрения и при одном угле, однако различия полученных изображения весьма значительны. Они говорят не в пользу существующего метода перспективных проекций.

 

Наличие на втором перспективном изображении четырех точек схода, расположенных ромбовидно, уменьшает ракурсные сокращения сторон помещения и придаёт перспективе более естественный и правдоподобный вид. В дальнейших построениях, например при показе обстановки комнаты, точки схода F1 и F2 используются для проведения горизонтальных прямых, расположенных вдоль боковых стен, а точки F3 и F4 — для продольных прямых, проектирующихся соответственно на плоскость пола и потолка.

 

Если же при изображении мебели и различных предметов домашнего обихода пользоваться одной точкой схода, производя построение в соответствии с требованиями метода центральной проекции, то не только все помещение, но и отдельные предметы примут неестественный, деформированный вид.

 

Пои построении перспектив предметов, окружающих человека в интерьере, следует помнить о возникающих в этих случаях искажениях, обусловленных явлением константности восприятия. Как указывалось выше, искажения эти могут возникать и при нормальных углах зрения, поэтому ограничение зрительных углов не является достаточно эффективным средством для их устранения.

 

71. Перспектива комнаты площадью 15-18 м2: слева — построенная существующим методом; справа — построенная с применением четырех точек схода

 

Примером этого может служить представленный на рисунке 73 фотоснимок лежащей на столе книги. Несмотря на то, что угол зрения на нее менее 30° книга на изображении имеет неестественно искаженный вид. Работая над натюрмортом всегда необходимо иметь в виду указанные факты константности восприятия во избежание непроизвольного искажения перспективной схемы рисунка.

 

Построение перспективы небольших предметов предлагаемым методом осуществляется по общепринятой системе. В качестве примера обратимся к построению перспективы книги, которое произведем с той же точки зрения, откуда она была сфотографирована.

 

На рисунке 72 задан план стола, на котором лежит раскрытая книга, а также показано расположение книжной полки вдоль края стола. Построение перспективы начинаем с определения положения проекционной поверхности, которую устанавливаем на чертеже в верхней части рисунка, изображающего боковой вид объекта. При этом вершину и центр следа проекционной поверхности располагаем на оси Y, так, чтобы точка зрения O делила радиус окружности на две равные части.

 

Затем параллельно соответствующему участку проекционной поверхности, заключенной между лучами, направленными к краям объекта, проводим картинную плоскость A50, позволяющую получить перспективное изображение более крупного размера. В плане ее след размещаем вдоль края стола, то есть перпендикулярно оси X. Участок полки с книгами проектируем на другую плоскость — B050, расположенную вертикально.

 

Чтобы построить на изображении перспективные очертания книги, необходимо определить положение точек 1', 2'…6', характеризующих форму и расположение объекта. С этой целью спроектируем указанные точки на след картинной плоскости A50, помещенный на чертеже бокового фасада. Затем все точки, полученные на отрезке A50, переносим на перспективу (рис. 72), располагая этот отрезок перпендикулярно ее основанию и проводя через указанные точки горизонтальные прямые 101'0, 202'0, 505'0, 606'0.

 

Эти прямые определят высоту расположения искомых точек 1'0, 2'0, 5'0, и 6'0, над основанием картины. Место же их расположения по горизонтали может быть установлено с помощью прямых, идущих в точку схода и расположенных в плане перпендикулярно основанию картины в точках 1"-6" (рис. 72).

 

Чтобы получить указанные прямые на перспективе, следует перенести на основание картины отрезок 1" 6", взятый с плана со всеми нанесенными на нем точками и затем провести прямые в точку схода F, лежащую на вертикали A'B0. Так как точка схода лежит за пределами чертежа, для упрощения построения можно воспользоваться тем обстоятельством, что луч OB'0 пересекает отрезок aF на расстоянии 1/3 aF (рис. 72). Этот факт говорит о том, что горизонтальные отрезки, проходящие через точку B'0 параллельно основанию картины, получатся на перспективе также сокращенными на 1/3 своей натуральной величины.

 

Проведя таким образом через точку B'0 горизонтальную прямую (рис. 73), располагаем на ней отрезок 1" 6", уменьшенный на 1/3 своей величины, и соединяем затем полученные точки с соответствующими им пунктами 1"-6", размещенными на основании перспективы. В результате проведенного построения определяем положение точек 1'0, 2'0, 5'0, и 6'0 на перспективном изображении. Точки 3'0 и 4'0 находим в пунктах пересечения прямых 1'0 5'0 и 2'0 6'0 с соответствующими прямыми, идущими в точку F.

 

72. Схема перспективного построения книги, лежащей на столе. План и боковой вид

 

73. Фотоснимок и перспективное изображение книги, построенное предлагаемым методом с той же точки зрения.

 

Нанесения точки позволяют прорисовать контуры книги, а затем и остальные детали изображения. Завершаем построение изображением полки с книгами, проектируя её на вертикальную картинную плоскость B050.

 

Построение аналогичного рода с применением нескольких поверхностей используются и при изображении других предметов не сложной формы встречающихся в интерьерах. Во всех этих случаях перспективные явления будут менее ярко выражены, чем при фотографировании или построениях, осуществляемых на основе обычного метода.

 

Помимо рассмотренных наиболее часто встречающихся случаев перспективного изображения интерьеров и предметов прямоугольной формы, возможны и другие случаи, когда изображаются объекты более сложных очертаний. Построения подобных перспектив характеризуются известным своеобразием, что позволяет разобрать их более подробно.

 

Рассмотрим в качестве одного из подобных примеров построение перспективы зала, одна из сторон которого имеет полукруглые очертания (рис. 74). Точка O и угол зрения заданы. Линия горизонта проходит на расстоянии высоты помещения.

 

Для построения перспективы объекта криволинейной формы наиболее рациональным обычно является прием вписывания искривленных контуров сооружения в простые геометрические фигуры, перспективные построения которых вначале и осуществляются. В данном примере, следуя этой рекомендации, необходимо вписать план зала в прямоугольник ABCD и произвести вначале построение полученного помещения прямоугольной формы.

 

Расположив соответствующим образом систему проекционных поверхностей, строим на перспективе проекцию фронтальной стороны зала — BC. Такое построение может быть осуществлено и без применения продольного разреза, которым мы обычно пользовались в подобных случаях.

 

Действительно, перспектива фронтальной стороны зала может быть определена по так называемому способу Дюрера. Способ этот состоит в том, что на перспективе наносятся проекция точки зрения O и натуральные высоты помещения H, расположенные в точках M0 и N0 пересечения картины с продолжением сторон AB и CD. Затем через концы отрезков Н проводим лучи, которые в пересечении вертикалями, проведенными через точки B0 и C0, определят положение перспективных контуров фронтальной стороны зала. Смысл этого построения заключается в том, что мы как бы изображаем поперечный разрез зала, демонстрируя положения точки зрения, проектирующих лучей и самой картинной плоскости, на которую проектируются очертания изображенного разреза.

 

Построив перспективу стороны BC, следует определить далее положение продольных сторон зала AB и CD. Эти стороны пересекают в плане картинные плоскости А0 В0 и C0 D0 в точках P0 и Q0, которые и являются по указанным причинам пунктами положения натуральных высот. Сносим параллельными лучами на прямые A0b и D0c точки, лежащие на следах картинных плоскостей A0B0 и C0D0. Затем отрезки A0p и D0q располагаем на перспективе вдоль линии горизонта, соответствующим образом совмещая точки b и B0, c и C0. Разместив далее натуральные высоты зала в точках p и q, проводим через их вершины и концы отрезков, находящихся в точках B0 и C0, наклонные прямые, определяющие перспективные контуры продольных сторон прямоугольного зала.

 

Построение перспективы нами производилось без использования точек схода для боковых сторон, как это делалось в предыдущих примерах. В данном случае мы отказались от их применения только лишь для того, чтобы продемонстрировать прием построения с использованием натуральных высот.

 

Для завершения построения общей схемы зала с криволинейным очертанием сторон следует вписать в полученную перспективу контуры соответствующих кривых. Положение циркульных дуг в плане, как мы видим, определяется тремя точками K, E и L, лежащими на прямых AB, BC и CD. Положение этих точек может быть без особого труда найдено и на перспективном изображении. Для этого необходимо лишь спроектировать их на соответствующие картинные плоскости и затем перенести на перспективу, как это видно на чертеже.

 

74. Схема построения перспективы зала с криволинейным очертанием в плане

75. Схема перспективного построения зала станции «Кропоткинская» московского метро

 

76. Схема перспективного изображения зала станции метро «Кропоткинская»

 

77. Сопоставление перспективных изображений зала станции метро «Кропоткинская» построенных предлагаемым методом (вверху) и методом центральной проекции на плоскость (внизу)

 

Через полученные точки K0, E'0 и L0 проводится плавная кривая. Прямые, проходящие через указанные точки, являются касательными к этой кривой. Аналогичное построение осуществляется также в нижней части чертежа, благодаря чему определяется вид криволинейных контуров пола.

 

Еще одним примером построения перспективы интерьера может служить изображение перронного зала станции «Кропоткинская» Московского метрополитена (рис. 75). Специфической особенностью этого объекта является его большая протяженность и продольном направлении.

 

Задавшись точкой и углом зрения, располагаем в плане проекционные поверхности. Так как луч OA0 пересекает ось колонны A, то для определения положения точки D0 проводим другой луч через центр колонны D. При этих условиях установленная система проекционных поверхностей может служить необходимой основой для наиболее правильной передачи вида внутренней центральной части перронного зала, ограниченной двумя рядами колонн. Характерно также и то, что точки схода для продольных сторон зала вследствие его чрезмерной вытянутости оказываются лежащими очень близко друг к другу, что дает возможность заменить их при переносе на плоскость C0B0 одной общей точкой.

 

Наличие одной точки схода не говорит еще, однако, о том, что перспективный вид зала должен оказаться тождественным проекционному изображению, полученному путем проекции на плоскость. Этого не произойдет по той простой причине, что сторона зала CB проектируется на плоскость C0 B0, благодаря чему ее размеры оказываются перспективно преувеличенными. Продольные же размеры сторон AB и CD принимаются по величине равными, как и в предыдущих примерах, отрезкам A0b и D0c.

 

Установив эти размеры, переносим их на перспективу (рис. 76), намечая положение точек A0, B0, F, C0, D0 и e. Затем, пользуясь разрезом, получаем перспективные размеры высот колонн hA, hB, hC и hD, (рис. 75), которые также переносим на перспективное изображение. Теперь для получения очертаний общих контуров зала соединяем вершины осей колонн дальнего и ближнего планов.

 

Далее производим разбивку продо

Date: 2015-10-21; view: 541; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию