Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Кетоновые тела, синтез, строение. Концентрация кетоновых тел в норме и при патологии(сахарный диабет), при голодании





Кетоновые тела – это общее понятие для трех продуктов обмена веществ, которые образуются в печени: ацетон, ацетоуксусная и бетаоксимасляная кислота.В норме кетоновые тела в общем анализе мочи отсутствуют. Хотя на самом деле за сутки с мочой выделяется незначительное количество кетоновых тел.

-Кетоновые тела обнаруживаются в общем анализе мочи при нарушении обмена углеводов и жиров, которое сопровождается увеличением количества кетоновых тел в тканях в крови (кетонемия).Содержание в моче кетоновых тел называется кетонурией. Также кетоновые тела в общем анализе мочи появляются в следствие обезвоживании организма. Они обнаруживаются в моче при резком похудении, лихорадочных состояниях, голодании, тяжелых отравлениях с сильной рвотой и поносом. Синтез кетоновых тел

Во время высокого уровня окисления жирных кислот образуется большое количество ацетилКоА. Если в цикле Кребса его достаточно, то он идёт на синтез кетоновых тел, кетогенез.

БИОСИНТЕЗ - Кетоновые тела: 1)-ацетоацетат -бетта-гидроксибутират (восстановленная форма ацетоацетата) -ацетон. -------------Формирование ацетоацетилКоА осуществляется путём конденсации двух молекул ацетилКоА в реакции, обратной тиолазной.

2) АцетоацетилКоА и ещё один моль ацетилКоА превращаются в бетта-гидрокси-бетта-метилглутарилКоА (ГОМГ-КоА) с помощью фермента ГОМГ-КоАсинтетазы. Этот фермент находится в большом количестве в печени. Небольшое количество ГОМГ-КоА покидает митохондрию.

3) затем с помощью ГОМГ-КоА редуктазы превращается в мевалонат, который является предшественником в синтезе холестерола). В митохондрии под действием ГОМГ-КоА лиазы ГОМГ-КоА превращается в ацетоацетат. Ацетоацетат может спонтанно декарбоксилироваться до ацетона или превращаться в бетта-гидроксибутират под действием бетта-гидроксибутиратДГ. Когда уровень гликогена в печени высок, то продукция бетта-гидроксибутирата возрастает.

 

Когда использование углеводов низкое или недостаточное, то падает уровень ЩУК. Это в свою очередь ведёт к возрастанию освобождения кетоновых тел из печени для исползования их как топливо другими тканями. В ранних стадиях голдания, когда последние остатки жиров окислились, сердце и мышцы главным образом будут потреблять кетоновые тела для того, чтобы сохранить драгоценную глюкозу, которая необходима мозгу.

Осложнения сахарного диабета.

Кетоацидоз, так же, как и гипогликемия, относится к острым (развивающимся очень быстро) осложнениям диабета. Когда организму не хватает энергии, он начинает ее получать, расщепляя жиры. При расщеплении жиров в организме вырабатываются специальные вещества, называемые кетонами. Кетоны в свою очередь повышают кислотность крови, отсюда и получилось название кетоацидоз.

 

31.Реакции трансаминирования и синтеза заменимых аминокислот в организме.. Роль витамина В6в этом процессе. Диагностическое значение определения трансаминаз.

Трансаминирование – реакции межмолекулярного переноса аминогруппы (NH2) от аминокислоты на α-кетокислоту без промежуточного образования аммиака (глутамат+ пируват = α-кетоглутарат + аланин). Реакции трансаминирования являются обратимыми и универсальными для всех живых организмов, они протекают при участии специфических ферментов – аминотрансфераз (трансамниназ). Теоретически реакции возможны между любой амино- и кетокислотой, но наиболее интенсивно они протекают, если один из партнеров представлен дикарбоновой амино- или кетокислотой. В переносе амниогруппы активное участие принимает кофермет трансминаз – пиридоксальфосфат (производное витамина В6). Для реакций трансаминирования характерен общий механизм. Ферменты реакции катализируют перенос аминогруппы не на α -кетокислоту, а на кофермент; образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям, приводящим к освобождению α-кетокислоты и пиридоксамнофосфата. Последний на второй стадии реагирует с любой другой α-кетокислотой, что через те же стадии приводит к синтезу новой аминокислоты и пиридоксальфосфата.

Трансаминазы - ACT и АЛТ - обладают весьма низкой специфичностью и чувствительностью в диагностике ИМ и не рекомендуются к использованию как маркеры ИМ. К примеру, рост ACT часто выявляется и при поражениях печени, и при панкреатитах, и при ТЭЛА, после приема больших доз алкоголя, после внутримышечного введения ЛС. Определение трансаминаз — дешевый метод, но требуется выполнять такие правила: анализ крови должен быть сделан в течение первых 6 ч, а затем в динамике (через 12, 18 и 24 ч).

 

32.Декарбоксилирование аминокислот. Образование биогенных аминов: гистамина, серотонина, ГАМК. Роль биогенных аминов.

Синтез и биологическая роль серотонина

Серотонин - нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС из аминокислоты 5-гидрокситриптофана в результате действия декарбоксилазы ароматических аминокислот. Этот фермент обладает широкой специфичностью и способен также декарбоксилировать триптофан и ДОФА, образующийся из тирозина. 5-Гидрокситриптофан синтезируется из триптофана под действием фенилаланингидроксилазы с коферментом Н4БП (этот фермент обладает специфичностью к ароматическим аминокислотам и гидроксидирует также фенилаланин) (см. схему ниже). Серотонин может превращаться в гормон мелатонин, регулирующий суточные и сезонные изменения метаболизма организма и участвующий в регуляции репродуктивной функции.

Серотонин - биологически активное вещество широкого спектра действия. Он стимулирует сокращение гладкой мускулатуры, оказывает сосудосуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием. По некоторым данным он может принимать участие в аллергических реакциях, поскольку в небольших количествах синтезируется в тучных клетках.

Синтез и биологическая роль ацетилхолина Ацетилхолин синтезируется в нервной ткани и служит одним из важнейших возбуждающих нейромедиаторов вегетативной нервной системы. Его предшественник - аминокислота серии:

Синтез и биологическая роль γ-аминомасляной кислоты

В нервных клетках декарбоксилирование глутамата (отщепление α-карбоксильной группы) приводит к образованию γ-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга (см. схему на с. 514).

Цикл превращений ГАМК в мозге включает три сопряжённые реакции, получившие название ГАМК-шунта. Первую катализирует глутаматдекарбоксилаза, которая является пиридоксальзависимым ферментом. Эта реакция является регуляторной и обусловливает скорость образования ГАМК в клетках мозга. Продукт реакции - ГАМК. Последующие 2 реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза, также пиридоксальзависимая, образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат используется в цитратном цикле. Инактивация ГАМК возможна и окислительным путём под действием МАО.

Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса; повышает дыхательную активность нервной ткани; улучшает кровоснабжение головного мозга.

ГАМК в виде препаратов гаммалон или аминалон применяют при сосудистых заболеваниях головного мозга (атеросклероз, гипертония), нарушениях мозгового кровообращения, умственной отсталости, эндогенных депрессиях и травмах головного мозга, а также заболеваниях ЦНС, связанных с резким возбуждением коры мозга (например, эпилепсии).

Аминокислота гистидин в разных тканях подвергается действию различных ферментов и включается в два разных метаболических пути: катаболизм до конечных продуктов; синтез гистамина. В печени и коже гистидин подвергается дезаминированию под действием фермента гистидазы с образованием уроканиновой кислоты. Конечным продуктом катаболизма гистидина служит глутамат, NH3 и производные Н4-фолата (N5-формимино-Н4-фолат и N5-формил-Н4-фолат). Наследственный дефект гистидазы вызывает накопление гистидина и развитие гастидинемии, которая проявляется задержкой в умственном и физическом развитии детей. Наследственный дефект уро-каниназы в печени может вызвать уроканинемию, при которой в крови повышается уровень уроканата. Симптомы этого патологического состояния во многом аналогичны симптомам других энзимопатий и проявляются отставанием умственного и физического развития.

Ферменты гистидаза и уроканиназа гепатоспецифичны, поэтому их определение используют в клинике для диагностики поражений печени.

Синтез и биологическая роль гистамина

Гистамин образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани.

Гистамин образует комплекс с белками и сохраняется в секреторных гранулах тучных клеток. Секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ), развитии иммунных и аллергических реакций.

Гистамин выполняет в организме человека следующие функции: стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона);

повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль); сокращает гладкую мускулатуру лёгких, вызывает удушье; расширение сосудов, покраснение кожи, отёчность ткани; вызывает аллергическую реакцию; выполняет роль нейромедиатора; является медиатором боли.

К биогенным аминам относят и катехолами-ны (дофамин, норадреналин и адреналин).Дофамин, в частности, является медиатором среднего отдела мозга. Норадреналин - возбуждающий медиатор в гипоталамусе, а также медиатор синаптической нервной системы и разных отделов головного мозга. Адреналин - гормон, активно синтезирующийся при стрессе и регулирующий основной обмен, а также усиливающий сокращение сердечной мышцы.

Date: 2015-09-25; view: 1630; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию