Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Геоанализ и моделирование





 

Несмотря на то, что хранящаяся в ГИС информация представляют собой основную ценность, она приносит пользу только при их использовании в прикладных задачах.

Каждая ГИС наряду с функциями ввода и вывода данных имеет средства, предназначенные для выполнения общих функций пространственного анализа и средства для решения специфических задач пользователя.

Эти средства зависят от моделей данных, поддерживаемых ГИС и используемых для решения задач пользователя.

К настоящему времени сложился перечень функций, наличие которых практически обязательно для таких ГИС. Это

функции организации выбора объектов по тем или иным условиям,

функции редактирования структуры и информации в базах данных,

функции картографической визуализации,

картометрические функции,

функции построения буферных зон,

анализа наложений,

функции сетевого анализа и др.

 

Пространственный анализ чаще всего проводится в целях выявления следующих отношений:

• закономерностей в структуре или особенностей распределения объектов,

а также их характеристик в пространстве;

 

• наличия и вида взаимосвязей в пространственном распределении нескольких классов объектов или отдельных характеристик;

 

• тенденций развития явлений в пространстве и во времени.

 

Еще одной задачей пространственного анализа является выбор решения с учетом пространственных характеристик.В ГИС используется два подхода к описанию пространства:

 

1) подход, основанный на структурировании пространства, т.е. выделении пространственных объектов, указании характера их локализации в пространстве, границ и в некоторых случаях взаимосвязей с другими объектами;

 

2) подход, основанный на неструктурированном представлении пространства. Все изучаемое пространство представляется множеством ячеек заданного размера и формы, в которых определены усредненные параметры или характеристики, соответствующие этой части пространства.

 

Определяя основные задачи анализа, мы говорили о свойствах и характеристиках объектов или точек пространства. Следует учесть, что они также совсем не однородны. Все характеристики делятся на качественные и количественные.

 

С количественными характеристиками можно выполнять различные операции, качественные характеристики можно главным образом сравнивать. Сравнивая, мы обычно пытаемся ответить на два вопроса: совпадают ли

 

Сравниваемые характеристики или объекты? Можно ли определить порядок этих характеристик или объектов? Если удается ответить только на первый вопрос, то говорят, что объекты описаны в номинальной шкале или шкале категорий, если мы можем ответить и на второй вопрос, то объекты описаны в ранговой шкале.

 

Функции работы с базами данных. Включают в себя:

1.изменения структуры баз данных (добавление или удаление полей, изменение их типов);

2.ввод новых данных и редактирование имеющихся, в том числе в автоматическом режиме и посредством выполнения специальных процедур анализа, таких, как вычисление площадей

;3.поиск необходимых данных с использованием запросов типа SQL

;4.вычисление (калькуляцию) новых значений поля по хар-кам

других полей базы данных или других баз;

5. создание производных баз данных путем объединения (классификации) записей исходной базы или выбором части полей исходной базы;

6. объединение баз по общему (ключевому) полю и др.

Основные операции формирования и редактирования пространственных данных

• разбиение полигонов линиями;

• слияние полигонов;

• создание полигона с дыркой, задаваемой вторым полигоном;

• удаление области перекрытия между полигонами (вычитание одного полигона из другого);

• получение пересечения полигонов.

Геокодирование- привязка к карте объектов, расположение которых в пространстве задается сведениями из таблиц баз данных. Эта информация может быть представлена следующим образом:

• координатами объектов - прямоугольными или географическими

• адресами объектов в адресной системе территорий, при привязке баз данных паспортной службы или налоговой инспекции;

• почтовыми индексами, например в случае анализа деятельности почтовых террористов;

• расстоянием от начала линейных маршрутов, например при привязке данных об авариях на нефтепроводах

 

Функции геокодирования позволяют «привязывать» базы данных, которые ведет большинство ведомств, обслуживающих урбанизированные территории и население, на них проживающее, к картам территорий.

Построение буферных зон. Буферные зоны -полигоны, границы которых отстоят на определенное расстояние от границ исходных объектов. Например, при расширении зоны, занятой трубопроводом, для прокладки новой линии, функциями ГИС может быть создана зона отчуждения вокруг реконструированного трубопровода.

Здесь на первый план выдвигаются топологические свойства рассматриваемых объектов, их взаимоположение и взаимовлияние на данной территории.

Если геометрическое моделирование отвечает на вопросы: «Какой формы и каких размеров?», то пространственное моделирование: «Где расположено и на каком расстоянии?» При этом «полем деятельности» пространственного моделирования является определенная территория земли с расположенными на ней объектами природного и искусственного происхождения [24 ].

В общем случае пространственный анализ проводится с целью:

- выявления закономерностей в расположении или структуре пространственных объектов;

- нахождения заданных характеристик объектов;

- нахождения взаимосвязей между пространственными объектами;

- выявления тенденций развития явления в пространстве и/или времени;

- выбор конкретного пространственного решения с учетом поставленных условий и ограничений.

При проведении геоанализа пространство может быть описано как структурированным (все объекты имеют координаты, границы, описан характер их локализации в пространстве, взаимосвязи с другими объектами), так и неструктурированным (указанные характеристики могут принимать любое значение из заданного интервала – влажность, температура) способом.

Все характеристики пространственных объектов подразделяются на качественные и количественные. Чтобы сравнивать и оценивать качественные характеристики их надо ранжировать.

Для более полного понимания особенностей различных функций пространственного анализа рассмотрим историю их возникновения.

Развитие функций, которые выполняют ГИС, шло неравномерно в зависимости от практических потребностей и научно-технических достижений. Первые подходы к построению информационных систем, ориентированных на обработку пространственных данных, были сформулированы в работах коллективов Канады и Швеции - двух странах, приоритет которых в этой области абсолютно бесспорен. Канадские работы были связаны с созданием в 1963-1971 годах Канадской ГИС (CGIS) под руководством Р. Томлинсона, ставшей одним из классических примеров крупной универсальной региональной ГИС национального уровня [25]. Работы шведской школы геоинформатики концентрировались вокруг ГИС земельно-учетной специализации, в частности Шведского земельного банка данных, предназначенного для автоматизации учета земельных участков и недвижимости.

ГИС “первого поколения” (60-х - начала 70-х годов) значительно отличались от того, что понимается под ними сегодня. Они решали узкий круг задач инвентаризации земельного кадастра и учета для совершенствования системы налогообложения, решаемые путем автоматизации земельно-учетного документооборота в виде банков данных соответствующей специализации. Постепенно в этот период разрабатываются функции, формирующие ядро геоинформационных технологий: оверлей разноименных слоев, генерация буферных зон, полигонов Тиссена, алгоритмы аналитических и графоаналитических построений и другие операции манипулирования пространственными данными. В 80-х годах ГИС, хотя они и начинали развиваться в значительной степени на базе информационно-поисковых систем, стали приобретать черты картографических банков данных с параллельным расширением возможностей математико-картографического анализа и моделирования данных. Большинство ГИС этого периода включают в свои задачи создание карт или используют картографические материалы как источник исходных данных. Расширяется круг решаемых задач, геоинформационные технологии применяются для различных видов научной и производственной деятельности и образования [26]. Осваиваются принципиально новые источники массовых данных для ГИС - это данные дистанционного зондирования, включая аэро- и фотосъемку. Цифровые методы обработки изображений интегрируются с системами автоматизированной картографии и геоинформационными технологиями, создавая предпосылки для единой программной среды 90-х годов [27].

В 80-х годах начаты работы по проектированию и разработке отечественных ГИС, основанные на осмыслении и развитии международного опыта. Следует отметить, что с момента возникновения первых отечественных геоинформационных систем и до настоящего времени, аппаратно-техническое обеспечение этих разработок базируются на персональных ЭВМ с развитой периферией. Системы ориентированы на расширение не только их геомодельных, но и интеллектуальных “знаниевых” возможностей на основе использования элементов экспертных систем.

В настоящее время для реализации многих информационных проектов используются достаточно мощные и многофункциональные программные средства.

Из зарубежных коммерческих средств ГИС наибольше распространение получили пакеты: pc ARC/INFO (Enviromental Systems Research Inst. Inc., США), Terrasoft (Digital Resourse System, Канада), MapInfo (MapInfo Inc., США), IDRISI (Clark Univ., США), SICAD/open (Siemens Nixdorf AG, Германия).

Наиболее известными системами России и стран СНГ являются: Инфосо (АО “Киберсо”, Москва), Панорама (Cибирское отделение РАН), Рельеф-Процессор (РП) (МП Рельеф (Украина)), GeoCad System 3. for Windows (CPS 3) (GeoCad Ltd/ (Новосибирск)), GeoDraw/GeoGraph for Windows (Центр Геоинформационных Исследований ИГ РАН, Москва), пакет WinPlan (Энергетический университет, Иваново) [5].

Исследования показывают, что практически все современные ГИС в большей или меньшей степени обладают функциями пространственного анализа и моделирования. Можно выделить три основных блока аналитических функций, выполняемых по ГИС-технологии: информационные запросы; топологический анализ; пространственное моделирование.

Простейшим видом информационных запросов является получение необходимых данных по параметрическим запросам (так называемые однопараметрические запросы). Эти функции представлены и в ГИС-вьюверах, и в справочно-картографических системах (СКС), и в инструментальных ГИС.

Более развитые геоинформационные системы способны обслуживать многокритериальные (или многофункциональные) логические запросы, когда объекты отбираются, например, по признаку их удаленности или близости относительно других объектов, их совпадения и по другим количественным и качественным характеристикам и их соотношениям.

Топологический анализ включает в себя картометрические измерения и определение пространственных характеристик, анализ сетей, анализ полигонов (площадей), анализ трехмерных поверхностей (рельефа).

Картометрические измерения служат для определения расстояний между объектами, длин транспортных путей, периметров участков, их площадей, определения соседства нескольких объектов и другие пространственные измерительные операции («в пределах», «содержит», «пересекает» и т.д.).

Анализ сетей включает поиск кратчайшего пути, суммирование значений атрибутов по элементам сети, распределение ресурсов в сети, поиск пространственной смежности, объединение сетей и проч. Решение сетевых задач основано на аналитических операциях, которые тесно смыкаются с моделирующими операциями, что позволяет решать классические оптимизационные задачи на самых различных видах сетей. Развитый блок анализа сетей имеется лишь у полнофункциональных ГИС. Одним из примеров служит блок NETWORK пакета ARC/INFO.

Полигональный анализ охватывает задачи, связанные с оверлейными операциями. Их суть состоит в наложении разнотипных полигонов с генерацией производных объектов, возникающих при их геометрическом наслоении, и с наследованием их семантики.

Наиболее сложными являются операции с трехмерными объектами (или операции анализа рельефа). Трехмерные объекты (“рельефы”) требуют особых форм представления, поскольку их пространственное положение должно описываться не только плановыми, но и пространственными координатами. Достаточно мощными средствами по анализу рельефа являются модуль TIN пакета ARC/INFO, модуль DTM системы Terrasoft (Digital Resource Systems, Канада) и специализированное средство для создания и обработки ЦРМ – Рельеф-Процессор (Харьковский Университет).

Пространственное моделирование - следующая ступень аналитических возможностей ГИС. Пространственное моделирование (геомоделирование) позволяет автоматизировать процесс выработки управленческих решений в составе информационных систем города или региона, «проигрывания сценариев» размещения социальных, промышленных, энергетических и других объектов, рассмотрения большого количества альтернативных проектных целей и поиска оптимальных вариантов с применением различных функций пространственного анализа и моделирования [см., например, 28].

Другими словами, пространственное моделирование представляет собой сочетание аналитических и имитационных математических моделей и координатно-локализованной (геометрической) информации в процессе изучения окружающей действительности.

Наиболее применяемыми функциями пространственного моделирования являются:

- генерация буферных зон;

- зонирование или районирование;

- построение пространственных статических моделей;

- построение пространственных динамических моделей;

- сетевое моделирование или сетевая оптимизация.

Рассмотрим подробнее содержание данных функций.

Генерация буферных зон - это расчет и построение областей, ограниченных эквидистантными линиями, построенными относительно множества точечных, линейных и площадных объектов; то есть это зоны, границы которых удалены на известное расстояние от любого объекта на карте. Ширина (радиус для точечных объектов) буферной зоны может быть постоянна или зависима от значения приписываемого объекту атрибута (так называемая «буферизация» со взвешиванием). Эта операция используется, например, для учета «запретных» зон на размещение проектируемых объектов по условиям эксплуатационной безопасности, а также, так называемых «зон влияния», оценивающих близость транспортных коммуникаций, инженерных сетей и т. д.

Зонирование или районирование применяется для группировки объектов по определенным принципам с последующей дифференциацией всей их совокупности по тем же критериям. Зонирование означает «разбиение» территории на части (зоны), объединяемые взаимными связями или общими свойствами.

Статическое пространственное моделирование применяется для исследования состояния территории, сложившегося на какой-то момент времени, на основе координатно-локализованной информации. Например, оценка криминогенной обстановки, прогнозирование чрезвычайных ситуаций и их последствий, оценка насыщенности территории энергопроизводящими и энергопотребляющими предприятиями, изменение экологического состояния территории с вводом в эксплуатацию на ней промышленного объекта или прокладки транспортной магистрали и т.д. В частности, генерацию буферных зон можно рассмотреть как наиболее простой способ получения пространственной статической модели.

Динамическое пространственное моделирование имитирует распространение различных явлений и процессов, протекающих во времени, на заданной территории. Например, имитация развития системы населенных мест, когда в основу эксперимента были заложены правила развития системы, а на ЭВМ “проигрывались” пути их реализации с помощью алгоритма статистических испытаний (метод Монте-Карло) [29]. Типичным примером применения пространственных динамических моделей является также пространственно-временное прогнозирование затопления территории во время паводков, прорыва дамбы или заполнения водохранилища ГЭС.

Сетевое моделирование (сетевая оптимизация) нужно для работы с процессами в географических сетях, которые образованы топологически связанными объектами – дорогами, трубопроводами, линиями электропередач, другими коммуникациями, – чтобы максимально эффективно определять маршруты движения, например, служб экстренного вызова, управлять ресурсами, распределенными по сетям, оценивать их и т.д. ГИС-технология позволяет оперативно планировать и контролировать ресурсы даже в очень больших разветвленных сетях самого разного назначения.

Функции моделирования маршрутов, местоположений ресурсных и транспортных потоков выполняются, как правило, в специализированных пакетах развитых ГИС с помощью таких особых показателей как связи, барьеры, ограничения для поворота, запреты на поворот, центры ресурсов, ограничения на ресурсы, остановки, ограничения на остановки.

На рис 2.2 представлена схема взаимосвязи функций пространственного анализа и моделирования по степени их сложности

 

Date: 2015-09-24; view: 2269; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию