Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя





Чтобы векторы ЭДС, напряжений и токов обмоток статора и ротора можно было изобразить на одной векторной диаграмме, следует параметры обмотки ротора привести к обмотке статора, т. е. обмотку ротора с числом фаз m2, обмоточным коэффициентом ko62 и числом витков одной фазной обмоткиω2 заменить обмоткой с m1, ω1 и kоб1. При этом мощности и фазовые сдвиги векторов ЭДС и токов ротора после приведения должны остаться такими же, что и до приведения. Пересчет реальных параметров обмотки ротора на приведенные выполняется по формулам, аналогичным формулам приведения параметров вторичной обмотки трансформатора.

При s = 1 приведенная ЭДС ротора

E'2 = E2 ke, (2.17)

где ke = E1/ E2 =ko61 ω1 /(ko62/ ω2) - коэффициент трансформации напряжения в асинхронной машине при неподвижном роторе. Приведенный ток ротора

I2 = I2/ ki, (2.18)

где ki = m1 ω1 koб1/ (m2 ω2 ko62) = m1 ke/ m2 - коэффициент трансформации тока асинхронной машины.

В отличие от трансформаторов в асинхронных двигателях коэффициенты трансформации напряжения и тока не равны (kе ≠ ki). Объясняется это тем, что число фаз в обмотках статора и ротора в общем случае не одинаково (m1 ≠ m2). Лишь в двигателях с фазным ротором, у которых m1 = m2, эти коэффициенты равны.

Активное и индуктивное приведенные сопротивления обмотки ротора:

r2 = r2 ke ki;

x2 = x2 ke ki. (2.19)

Следует обратить внимание на некоторую специфику определения числа фаз m2 и числа витков ω2 для короткозамкнутой обмотки ротора (см. рис. 10.3). Каждый стержень этой обмотки рассматривают как одну фазу, а поэтому число витков одной фазы короткозамкнутой обмотки ротора ω2 =,0,5; обмоточный коэффициент такой обмотки kоб2 = 1, а число фаз m2 = Z2, т. е. равно числу стержней в короткозамкнутой обмотке ротора.

Подставив в (2.9) приведенные значения параметров обмотки ротора Е2, I2, r2 и x2, получим уравнение напряжений обмотки ротора в приведенном виде:

2 - j 2 x2 - 2 r2/ s =0 (2.20)

Величину r′2/ s можно представить в виде

= - + r2 = r2 + r2 (2.21)

тогда уравнение ЭДС для цепи ротора в приведенных параметрах примет вид

0 = 2 - j 2 x2 - 2 r2 r2(1-s)/ s. (2.22)

Для асинхронного двигателя (так же как и для трансформатора) можно построить векторную диаграмму. Основанием для построения этой диаграммы являются уравнение токов (12.14) и уравнения напряжений обмоток статора (2.3) и ротора (2.22).

Угол сдвига фаз между ЭДС 2 и током 2

Ψ2 = arctg(x2s/ r2).

Так как векторную диаграмму асинхронного двигателя строят по уравнениям напряжений и токов, аналогичным уравнениям трансформатора, то порядок построения этой диаграммы такой же, что и векторной диаграммы трансформатора.

 

Рис. 2.1 Векторная диаграмма асинхронного двигателя

На рис. 2.1 представлена векторная диаграмма асинхронного двигателя. От векторной диаграммы трансформатора (см. рис. 1.19) она отличается тем, что сумма падений напряжения в обмотке ротора (во вторичной обмотке) уравновешивается ЭДС 2 обмотки неподвижного ротора (n2 = 0), так как обмотка ротора замкнутой накоротко. Однако если падение напряжения = 2 r2 (1-s)/ sрассматривать как напряжение на некоторой активной нагрузке r2 (1-s)/ s, подключенной на зажимы неподвижного ротора, то векторную диаграмму асинхронного двигателя можно рассматривать как векторную диаграмму трансформатора, на зажимы вторичной обмотки которого подключено переменное активное сопротивление r2 (1-s)/ s. Иначе говоря, асинхронный двигатель в электрическом отношении подобен трансформатору работающему на чисто активную нагрузку. Активная мощность вторичной обмотки такого трансформатора

Р2 = m1 I22 r2(1-s)/s (2.23)

представляет собой полную механическую мощность, развиваемую асинхронным двигателем.

Уравнениям напряжений и токов, а также векторной диаграмме асинхронного двигателя соответствует электрическая схема замещения асинхронного двигателя.

 

Рис. 2.2. Схемы замещения асинхронного

 

На рис. 2.2, а представлена Т-образная схема замещения. Магнитная связь обмоток статора и ротора в асинхронном двигателе на схеме замещения заменена электрической связью цепей статора и ротора. Активное сопротивление можно рассматривать как внешнее сопротивление, включенное в обмотку неподвижного ротора. В этом случае асинхронный двигатель аналогичен трансформатору, работающему на активную нагрузку. Сопротивление– единственный переменный параметр схемы. Значение этого сопротивления определяется скольжением, а следовательно, механической нагрузкой на валу двигателя. Так, если нагрузочный момент на валу двигателя М2 = 0, то скольжение s ≈ 0. При этом r2' (1 - s)/ s = ∞, что соответствует работе двигателя в режиме х.х. Если же нагрузочный момент на валу двигателя превышает его вращающий момент, то ротор останавливается (s = 1). При этом r2'(1 - s)/ s = О, что соответствует режиму к.з. асинхронного двигателя.

Более удобной для практического применения является Г- образная схема замещения (рис. 2.2, б), у которой намагничивающий контур (Zm = rm+ j xm) вынесен на входные зажимы схемы замещения. Чтобы при этом намагничивающий ток I0 не изменил своего значения, в этот контур последовательно включают сопротивления обмотки статора r1 и х1. Полученная таким образом схема удобна тем, что она состоит из двух параллельно соединенных контуров: намагничивающего с током 0 и рабочего с током - 2. Расчет параметров рабочего контура Г-образной схемы замещения требует уточнения, что достигается введением в расчетные формулы коэффициента с1 (рис. 2.2, б), представляющего собой отношение напряжения сети U1 к ЭДС статора Е1 при идеальном холостом ходе (s = 0) [1]. Так как в этом режиме ток холостого хода асинхронного двигателя весьма мал, то U1 оказывается лишь немногим больше, чем ЭДС Е1, а их отношение с1 =U1/ E1 мало отличается от единицы. Для двигателей мощностью 3 кВт и более с1 = 1,05 ÷ 1,02, поэтому с целью облегчения анализа выражений, характеризующих свойства асинхронных двигателей и упрощения практических расчетов, примем с1 = 1. Возникшие при этом неточности не превысят значений, допустимых при технических расчетах. Например, при расчете тока ротора I2 эта ошибка составит от 2 до 5 % (меньшие значения относятся к двигателям большей мощности).

Воспользовавшись Г-образной схемой замещения и приняв с1 = 1, запишем выражение тока в рабочем контуре:

I2 = (2.24)

или с учетом (2.21) получим

I2 = . (2.25)

Знаменатель выражения (2.25) представляет собой полное сопротивление рабочего контура Г-образной схемы замещения.асинхронного двигателя.

Контрольные вопросы

1. В чем сходство и в чем различие между асинхронным двигателем и трансформатором?

2. Почему с увеличением механической нагрузки на вал асинхронного двигателя возрастает потребляемая из сети двигателем мощность?

3. Каков порядок построения векторной диаграммы двигателя?

4. В чем отличие Г-образной схемы замещения от Т-образной?

Date: 2015-09-24; view: 1242; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию