Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Магнитно-резонансный томограф





 

Магнитно-резонансный томограф – это прибор, предназначенный для рентгенологического исследования, принцип работы заключается в получении теневого изображения идеальных слоев исследуемых объектов, расположенных на разной глубине, за счет избирательного поглощения электромагнитного излучения. Это обусловлено переориентацией магнитных моментов атомных ядер, которые находятся в постоянном магнитном поле.

Магнитно-резонансный томограф включает в себя такие составляющие, как магнит – центральная часть томографа, создает то самое необходимое поле напряженностью до 10 Т и более; генератор радиочастотных колебаний для выработки необходимого потока электронов; приемник, который является пространством для помещения исследуемого; а также регистрирующее устройство. Запись спектров проводится двумя способами: через изменение величины магнитного поля с последующим созданием резонансных условий для разных линий в самом спектре магнитно-резонансного излучения либо через возбуждение резонанса сразу и одновременно во всей полосе спектра с помощью мощного радиочастотного импульса, что способствует достаточно резкому сокращению времени измерения.

В основе работы магнитно-резонансного томографа лежит явление ядерного магнитного резонанса. Само явление основано на том факте, что ядра атомов большинства химических элементов обладают определенным моментом количества движения и постоянным магнитным моментом, за исключением ядер, обладающих четным числом протонов и нейтронов. Если поместить в постоянное магнитное поле магнитный момент системы ядер подобно вращающемуся волчку, который выведен из вертикального положения, то движение данного магнитного момента по поверхности конуса будет осуществляться с вращением вокруг оси направления поля, данное явление получило еще одно название как прецессионное движение, причем данное вращение совершается с определенной частотой, которую можно вычислить, зная константу для каждого вида ядер, а также напряженность постоянного магнитного поля. Дальнейшее воздействие переменного электромагнитного излучения вместе с данной частотой на те ядра, которые находятся именно в постоянном магнитном поле, в основном приводит к избирательному, или резонансному, поглощению всей энергии электромагнитного излучения и, как следствие, к получению сигнала магнитного резонанса.

Ядрам соответствуют разнообразные частоты резонанса, которые в основном находятся в пределах от единиц до нескольких сотен мегагерц в тех магнитных полях, напряженность которых составляет порядка 1—10 Т. Как правило, данную область частот относят к радиочастотному диапазону электромагнитных волн, за счет чего магнитный резонанс считается одним из методов радиоспектроскопии.

В итоге применение магнитного резонанса для структурного исследования основано на том, что, кроме внешнего магнитного поля, на само ядро в веществе действуют и различные внутренние поля. За счет их влияния происходит сдвиг частоты резонанса и расщепление на несколько или же множество резонансных линий, другими словами, за счет действия внутренних полей происходит образование спектра магнитного резонанса и изменение формы линии времени релаксации. А изучение спектров магнитного резонанса в свою очередь позволяет определить некоторые выводы о химической и пространственной структуре различных веществ, даже не производя химического анализа данного объекта.

Таким образом, картину пространственного распределения отдельных видов молекул в организме получают именно при помощи магнитно-резонансного томографа. При этом происходит создание за счет последовательно приложенных градиентов магнитного поля по разнообразным направлениям такого распределения магнитного поля, чтобы именно в данный момент различным элементам объема в пределах одного изучаемого сечения соответствовали свои определенные, характерные для их местоположения частоты резонанса.

Изменение градиентов во времени и специальная обработка всех результатов измерений осуществляется с помощью ЭВМ, что позволяет получить определенную пространственную картину распределения молекул, которые могут содержать различные атомы водорода или фосфора. Также необходимо обратить внимание, что при регистрации магнитно-резонансного изображения амплитуда самого резонанса в каждом элементе объема может быть выражена посредством интенсивности освещения или в цветовой шкале.

Таким образом, кровеносные сосуды при магнитно-резонансной томографии выглядят достаточно темными вследствие оттока крови из исследуемого объекта за все время измерения. В случае с магнитным моментом ядер в различных элементах объема может быть измерено время релаксации (расслабления), в частности по уменьшению амплитуды резонанса, которая не успевает полностью восстановиться при достаточно большой частоте следования импульсов. Это способствует увеличению контрастности в изображениях различных тканей, что широко используется в медицинской практике, например для различения изображения серого вещества мозга и белого вещества или опухолевых клеток и здоровых.

Сам метод магнитно-резонансной томографии нашел широкое применение в медико-биологических исследованиях, поскольку имеет огромное количество достоинств, в частности одним из преимуществ данного метода является его высокая чувствительность в изображении мягких тканей, а также достаточно высокая разрешающая способность вплоть до долей миллиметра. И при помощи магнитно-резонансного томографа можно получить изображение исследуемого объекта абсолютно в любом сечении. Именно на этой основе могут быть реконструированы объемные изображения отдельных органов.

Стоит отметить, что получение изображения с помощью данного метода может быть синхронизировано с определенными циклами физиологических процессов, что также имеет немаловажное значение в медико-биологических исследованиях. Помимо всего вышеперечисленного, магнитно-резонансную томографию применяют для установления структуры биологически активных веществ и изучения механизмов их действия. По спектрам магнитного резонанса можно определить особенности структуры биополимеров в водной среде и ее изменения при их взаимодействии с субстратом и биологически важными веществами.

Еще спектры применяются для анализа липидного состава мембран, их фазового состояния, взаимодействия липидов с белками и другими веществами для определения положения в мембранах различных необходимых соединений, проницаемости мембран, состояния и количественной характеристики разных ионов в клетках, для определения продуктов биологических реакций. При помощи метода магнитно-резонансной томографии появилась возможность измерять количество АТФ и других макроэргических соединений и их изменения непосредственно в организме исследуемого. Но наиболее важной особенностью метода является низкая энергия используемых в магнитно-резонансных томографах излучений, что существенно снижает их вредное воздействие на организм человека. Данная особенность значима для таких наук, как медицина и биология.

 

Date: 2015-09-25; view: 289; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию