Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Производная по направлению. Градиент. Уравнение касательной плоскости к поверхности. Уравнение нормали





Вектор с координатами , , называется градиентом функции u = f (x, y, z) в точке M(x, y, z) и обозначается grad u = + + .

Под производной функции u = f (x, y, z) в данном направлении понимается выражение = cos a + cos b + cos g, где cos a, cos b, cos g – направляющие косинусы вектора

 

Производная представляет собой скорость изменения функции в данном направлении.

Теорема. Производная функции по направлению равна проекции градиента этой функции на данное направление (в соответствующей точке).

Как известно, проекция вектора на другой вектор имеет максимальное значение, если оба вектора совпадают по направлению.

Градиент функции в данной точке указывает напрвление наиболее быстрого возрастания функции.

Величина градиента, т.е. | grad u | = обозначается tg j и определяет крутизну наибольшего ската или подъема поверхности u = f (x, y).

Пусть М – точка поверхности S. Плоскость, содержащая точку М и обладающая тем свойством, что расстояние от этой плоскости до переменной точки M 1 поверхности S является бесконечно малым по сравнению с расстоянием ММ 1, называется касательной плоскостью к поверхности S в точке М.
Если поверхность в трехмерном пространстве задана уравнением f (x; y; z) = 0, где функция f достаточное число раз дифференцируема, то уравнение плоскости, касательной к этой поверхности в точке М (хМ; уМ; zМ), имеет вид:

, (**)

где – частные производные функции трех переменных f (x; y; z) по этим переменным.
Если же поверхность задана уравнением, разрешенным относительно аппликаты z, т.е. имеет вид z = z (x; y), то уравнение (**) касательной плоскости принимает вид:

(конечно, предполагается, что функция z имеет непрерывные первые частные производные).

Нормаль (франц. normal, от лат. normalis — прямой) к кривой (к поверхности) в данной её точке — прямая, проходящая через эту точку и перпендикулярная к касательной

 

прямой (касательной плоскости) в этой же точке кривой (поверхности). Плоская кривая имеет в каждой точке единственную Нормаль, расположенную в плоскости кривой. Если х = f (t) и у = g (t) — параметрические уравнения плоской кривой L, то уравнение Нормаль в точке (x 0, y 0) кривой L, соответствующей значению t 0 параметра t, может быть записано в виде:

.

Для плоской кривой, заданной уравнением F (х, у) = 0, уравнение Нормаль имеет вид:

.

Пространственная кривая имеет в каждой своей точке бесчисленное множество Нормаль, заполняющих некоторую плоскость (нормальную плоскость). Нормаль, лежащая в соприкасающейся плоскости, называется главной нормалью. Нормаль, перпендикулярную к соприкасающейся плоскости, называется бинормалью. Касательная, главная Нормаль и бинормаль образуют подвижный триэдр кривой.

Для поверхности, заданной уравнением F (х, у, z) = 0, Нормаль может быть представлена уравнениями:

.

Понятие Нормаль играет существенную роль не только в дифференциальной геометрии, но и в различных её приложениях: в геометрической оптике (например, в формулировке основных законов преломления и отражения световых лучей), в механике (материальная точка или тело при перемещениях по гладким линиям или поверхностям испытывают реакцию, направленную по Нормаль, в консервативном поле силовые линии в каждой точке имеют направление Нормаль к изопотенциальной поверхности, проходящей через эту точку, и т.д.).

 

58. Екстремум функції двох змінних.

Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной (см. п. 25.4).

Пусть функция z = ƒ(х;у) определена в некоторой области D, точка N(x0;y0) Î D.

Точка (х00) называется точкой максимума функции z=ƒ(х;у), если существует такая d-окрестность точки (х00), что для каждой точки (х;у), отличной от (хоо), из этой окрестности выполняется неравенство ƒ(х;у)<ƒ(хоо).

Аналогично определяется точка минимума функции: для всех точек (х; у), отличных от (х00), из d-окрестности точки (хоо) выполняется неравенство: ƒ(х;у)>ƒ(х00).

На рисунке 210: N1 — точка максимума, а N2 — точка минимума функции z=ƒ(x;у).

Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумами.

Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (х00) сравнивается с ее значениями в точках, достаточно близких к (х0; у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.

 

59. Найбільше та найменше значення функції багатьох змінних у замкненій області.

Рассматривается множество . Если определено правило, по которому каждой точке ставится в соответствие некоторое число (единственным образом), то говорят, что на множестве D определена (однозначная) функция . Как обычно, множество D называется областью определения функции, а множество всех соответствующих значений u: Q = { u } – множеством значений. Часто функцию u = F (x) называют отображением

При n = 2 уравнение F (x,y) = C задает линии уровня поверхности z = F (x,y), а при n = 3 уравнение F (x,y,z) = Споверхности уровня.

Задание ФНП может быть неявным: F (x,u) = 0 или параметрическим .

Примеры. Поверхности 2 – го порядка.

Как и в случае одной переменной, определяется предел ФНП:

Вместо условия можно писать .

Справедливы все общие свойства пределов: арифметические свойства, переход к пределу в неравенствах и т.д.

Тем не менее, понятие предела ФНП оказывается более сложным за счет того, что стремление т. х к хо может осуществляться большим числом способов, нежели в случае одной переменной.

Пример.

По аналогии с функциями одной переменной, вводятся бесконечно малые и большие величины и понятие непрерывности:

Функция называется бесконечно малой при , если

Функция называется бесконечно большой при , если

Функция называется непрерывной в т. , если Функция непрерывна на множестве, если она непрерывна в каждой точке этого множества.

Остаются верными все свойства непрерывных функций: арифметические свойства, теорема о сохранении знака. Теоремы об ограниченности непрерывной функции, о переходе через промежуточные значения и о достижении максимума и минимума формулируются для замкнутых областей. Верна также теорема о непрерывности сложной функции: пусть функция непрерывна в т. хо, а функции в т. В этом случае функция

 

 

 

Date: 2015-09-18; view: 3503; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию