Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Поляризация света Араго





 

 

Великий астроном и физик Доминик‑Франсуа Араго (1786–1853) родился в небольшом городке Этажеле, что недалеко от Перпиньяна (Восточные Пиренеи). В 16 лет он принял решение поступать в Политехническую школу и для этого поехал в Париж. Шел 1802 год. Только что был заключен Амьенский мир, и Наполеон, герой войны, стал для всех французов героем долгожданного мира.

 

Доминик‑Франсуа Араго

Экзамены в Политехнической школе были трудные, и многие на них проваливались. И немудрено, ведь экзаменатором был сам Гаспар Монж, великий математик и создатель «Начертательной геометрии». Но Араго ответил на все его вопросы – сначала по геометрии, а потом и по алгебре. Экзамен продолжался два с лишним часа, и сердце великого Монжа оттаяло: странный юнец южанин заинтересовал его, и имя Араго оказалось первым в списке принятых. А спустя год Араго уже сдавал экзамен знаменитому математику Адриену‑Мари Лежандру (1752–1833). Их «поединок» был не менее яростным и изматывающим, чем экзамен Гаспара Монжа, и надо было обладать величием Лежандра, чтобы закончить его полным признанием таланта молодого ученика.

16 мая 1804 года Наполеон был провозглашен императором французов, а 2 декабря состоялась его коронация. Студентов Политехнической школы выстроили в актовом зале для принятия присяги. Но один за другим вместо того, чтобы отвечать «Я клянусь!», они отвечали «Я здесь!» Как видим, слепым повиновением новоявленному императору Франции здесь и не пахло. Кроме того, накануне Араго отказался поставить свою подпись под поздравлением императору.

Вскоре список самых непокорных студентов попал на стол Наполеону. Первым в нем стояло имя Араго. Первым не по алфавиту, а по праву первого по успеваемости ученика.

«Я не могу выгонять лучших, – сказал Наполеон. – Жаль, что он не последний… Оставьте это дело».

Так Наполеон впервые узнал о существовании некоего 18‑летнего республиканца Доминика‑Франсуа Араго. Он тогда и представить себе не мог, что его монаршая милость только что повлияла на жизнь человека, который в последние дни его собственного правления определит его судьбу…

В 1805 году Араго по настоянию выдающегося французского математика, физика и астронома Пьера‑Симона Лапласа стал секретарем‑библиотекарем в Парижской обсерватории. А через год он отправился в Испанию. Дело в том, что незадолго до этого любимчик Наполеона Лаплас сумел выбить у правительства деньги на то, чтобы продолжить работы по измерению Парижского меридиана.

Араго нехотя согласился на эту командировку, не посмев отказать великому Лапласу. К тому же, измерение меридиана было важно для обоснования метрической системы мер, и различные ученые занимались этим уже давно, с 80‑х годов XVIII века. Работа эта постоянно прерывалась войнами, и теперь в нее должен был включиться Араго, которому предложили линию съемки в Каталонии, в районе Барселоны. Молодой Араго должен был ехать туда вместе с Жаном‑Батистом Био, известным своей недавно вышедшей книгой «Опыт аналитической геометрии». Тем самым академиком Био, который в 1804 году вместе с Гей‑Люссаком поднимался на воздушном шаре на высоту 4000 метров.

 

Жан‑Батист Био

Шесть месяцев они провели на станции в скалистых Пиренеях, и никто в округе – ни крестьяне, ни монахи, ни даже образованные горожане – не понимал, чем занимаются эти странные французы, которые о чем‑то сигналят друг другу желтыми огнями с вышек и что‑то измеряют диковинными штуковинами. Работа была долгой и явно не сулившей никаких наград, но Араго упорно продолжал делать ее. Наступил 1808 год. 2 мая в Мадриде вспыхнуло антифранцузское восстание, которое потопил в крови родственник Наполеона маршал Мюрат. Вслед за Мадридом поднялись против завоевателей провинции. Испанские патриоты бросили вызов Наполеону, и началась герилья – беспощадная народная война за независимость.

Жан‑Батист Био, заболев, уже давно уехал во Францию. Да и Араго в такой ситуации имел полное право собрать свои приборы и вернуться домой. Но вместо этого он отправился на остров Мальорка заканчивать измерения. Для увлеченного своим делом ученого Мальорка в тот момент была не центром антифранцузского восстания, а простой точкой на карте, которую надо было геодезически соединить с такими же точками на Ибице и Форментере. Просто так проходил меридиан, и не Араго его выбирал.

С точки зрения здравомыслящего человека, с меридианом ничего не случилось бы, если бы его оставили на годик‑другой. Но в науке, как известно, здравый смысл – не такая уж великая ценность.

Несмотря на выкрики: «Смерть французам!», Араго преспокойно продолжал работать, полагая, что эти угрозы к нему не относятся. Ведь он не был захватчиком, ему просто надо было узнать, насколько Земля сжата у полюсов…

Но испанцы решили, что этот странный француз, который сигналит огнями на виду французской эскадры, – обыкновенный шпион. Они схватили Араго, жестоко избили и бросили в тюрьму.

В тюрьме Араго прочитал в газетах детальное описание казни молодого астронома… Араго. То есть его самого! После этого он решился на побег. Для этого он нанял рыбацкий барк, и тот доставил его в Алжир. Там, раздобыв фальшивый паспорт, он сел на корабль и отправился в Марсель. Через трое суток он должен был быть на родине, но, увы, в самую последнюю минуту его корабль настиг пиратский парусник, и ученый снова оказался в плену. Однако счастливчику вновь удалось бежать.

Лишь в 1809 году Араго вернулся во Францию, где его давно считали погибшим. Его «воскрешение» произвело в Париже настоящую сенсацию, и его кандидатуру немедленно предложили в Академию наук. За него высказались такие знаменитости, как Жан‑Батист Био, Адриен‑Мари Лежандр и Жозеф‑Луи Лагранж. Араго выбрали почти единогласно, хотя ему было всего 23 года.

 

 

...

Получив расшитый золотом мундир, Араго явился на прием к императору. Таков был новый порядок: Наполеон желал лично знакомиться с новоизбранными академиками.

Когда корсиканец остановился перед Араго, последовал резкий вопрос: «Вы очень молоды, как вас зовут?»

Араго хотел было ответить, но его опередил один из академических чиновников: «Его зовут Араго! Он измерил дугу меридиана в Испании!»

Император, кивнув, отошел в сторону, а императорская свита с жалостью посмотрела на «недотепу», только что упустившего прекрасный случай ввернуть что‑нибудь многозначительное и тем самым удержаться в памяти самого Наполеона.

В ответ гордый Араго лишь улыбнулся. Никто тогда и не подозревал, что через шесть лет уже Наполеон будет долго ждать ответа Араго. А сейчас же ученый чувствовал себя свободным и независимым. Он мог заниматься любимым делом, и ему совсем не нужна была благосклонность кого бы то ни было.

 

В 1809 году Араго начал преподавать геометрию в Политехнической школе и занимался этим до 1831 года. Его главные научные работы были посвящены магнетизму, оптике и астрономии.

В 1811 году он открыл хроматическую поляризацию света, впервые наблюдал вращение плоскости поляризации света в кварце. Ему принадлежит изобретение полярископа – индикатора поляризованности излучения, с помощью которого стало возможно доказательство газообразного состояния солнечной фотосферы.

Поляризация небесного свода – это одно из оптических явлений атмосферы, наблюдаемое при безоблачной погоде днем, а также ночью при лунном свете. Заключается это явление в том, что лучистый поток, поступающий на земную поверхность в виде рассеянного толщей воздуха света неба, частично поляризован. Этим открытием Араго мог гордиться. Одного этого было бы достаточно, чтобы его имя фигурировало в научных энциклопедиях и на страницах учебников. А ведь ему было всего 25 лет, у него все еще было впереди…

После поражения при Ватерлоо Наполеон прибыл в Париж. Это было 21 июня 1815 года. Теперь для воинственного императора все было кончено, 22 июня он подписал отречение и удалился в загородный замок Мальмезон. Гаспар Монж оказался одним из немногих, кто не оставил Наполеона в эти тяжелые для него дни. Именно ему Наполеон и открыл свой план, казавшийся наилучшим выходом из создавшегося положения, – уехать в Америку.

Наполеон, большой любитель наук, при всяком удобном случае напоминал окружающим и самому себе о своем неосуществленном таланте, которым пришлось пожертвовать ради высших интересов Франции. Вот и сейчас он утверждал, что в Америке он будет вести научные исследования, он обследует весь Новый Свет от Канады до мыса Горн. А для этого ему был нужен спутник, достойный ученый, закаленный и отважный, чтобы хоть как‑то соответствовать самому Наполеону… Такой, например, как верный Гаспар Монж, но помоложе, ибо сам Монж в свои семьдесят вряд ли уже мог соответствовать предъявляемым требованиям.

Решено было оказать эту честь Доминику‑Франсуа Араго. Но тот отказался, и это привело Гаспара Монжа в состояние шока. Разве можно было мечтать еще о чем‑то, кроме как стать спутником великого Наполеона?

Старик до последнего не терял надежды уломать своего ученика. При этом никто из приближенных не понимал, почему Наполеон затягивает отъезд, ведь дорога была каждая минута. Два фрегата уже давно ждали экс‑императора в порту Рошфор. Но день проходил за днем, а Наполеон все сидел в Мальмезоне, словно ожидая чего‑то.

Наполеон выехал из Мальмезона лишь 28 июня.

 

 

...

Историк Е. В. Тарле писал:

«Он явно медлил с отъездом (…)

Никогда после сам он не дал удовлетворительного объяснения своему поведению в эти дни. Ему предлагали покинуть Францию не на одном из фрегатов, а на небольшом судне тайно. Он не пожелал. В Рошфоре узнали о присутствии императора, и каждый день под его окнами стояла часами толпа в несколько тысяч человек, кричавшая: “Да здравствует император!” Наконец, 8 июля он переехал на борт одного из двух своих фрегатов и вышел в море. Фрегат остановился у большого острова Экс, лежавшего несколько северо‑западнее Рошфора, но дальше выйти не мог, так как английская эскадра замыкала все выходы в океан (…)

Наполеон вышел на берег. Его сейчас же узнали. Матросы, солдаты, рыбаки, все окрестное население сбежалось к фрегату. Солдаты стоявшего там гарнизона просили, чтобы император произвел им смотр. Наполеон это сделал, к величайшему их восторгу. Он осмотрел и укрепления острова, некогда выстроенные тут по его приказу.

Когда он вернулся на борт фрегата, оказалось, что из Парижа фрегатам прислан приказ только в том случае выйти в море, если поблизости не будет английской эскадры. Но англичане стояли у выхода из бухты в боевой готовности (…)

Наполеон тотчас же принял решение. При императоре находились герцог де Ровиго (Савари), генерал Монтолон, маршал Бертран и граф Лас‑Каз, офицеры великой армии, фанатически преданные Наполеону. Император отправил на крейсировавшую вокруг английскую эскадру Савари и Лас‑Каза для переговоров. Не пропустит ли эскадра французские фрегаты, которые отвезут Наполеона в Америку? Не получено ли распоряжения по этому поводу?

Принятые капитаном Мэтлендом на корабле “Беллерофон”, они натолкнулись на вежливый, но решительный отказ. “Где же ручательство, – сказал Мэтленд, – что император Наполеон не вернется снова и не заставит опять Англию и всю Европу принести новые кровавые и материальные жертвы, если он теперь выедет в Америку?”

На это Савари отвечал, что есть огромная разница между первым отречением в 1814 году и нынешним, вторым отречением, что теперь (…) император решительно и навсегда удаляется в частную жизнь. “Но если так, то почему император не обратится к Англии и не ищет в Англии убежища?” – возразил Мэтленд. Из дальнейшего разговора, однако, посланные Наполеона не уловили никаких обещаний, ни даже главного слова: будет ли Англия считать Наполеона пленником или нет».

Наполеон вновь отправил Лас‑Каза к капитану Мэтленду и сообщил ему, что принял решение доверить свою судьбу Англии.

 

Только 15 июля 1815 года экс‑император сел на бриг «Ястреб», который должен был перевезти его на борт «Беллерофона». Дальше его ждал лишь затерянный в океане остров Святой Елены…

 

Закончилась великая эпоха, и кажется, что, если бы Араго согласился и приехал в последнюю минуту в Рошфор, колесо истории повернулось бы совсем иначе.

Монж делал все, что мог, уговаривая Араго. Араго не осуждал старика Монжа: противиться очарованию Наполеона умели немногие. Но лично его судьба бывшего императора не волновала. Впрочем, не волновали его и другие императоры и их амбиции.

Когда политические и военные страсти улеглись, Араго спокойно продолжил свои научные изыскания. В 1820 году он обнаружил эффект намагничивания железных опилок вблизи проводника с током (магнитная индукция), а в 1825 году, наблюдая вместе с Александром фон Гумбольдтом силу магнетизма, продемонстрировал действие вращающихся металлических пластинок на магнитную стрелку (магнетизм вращения).

А еще он впервые получил искусственные магниты из стали, открыл так называемую «среднюю точку поляризации» (точку, в которой поляризация незаметна), установил связь между полярными сияниями и магнитными бурями (изменениями напряженности магнитного поля Земли), применил интерференцию света к правильному объяснению мерцания звезд и т. д.

Вообще о научных открытиях Араго говорил примерно следующее: всякая новая научная истина проходит через три фазы – в первой отрицается ее истинность, во второй доказывают ее невозможность, в третьей полагают, что всем всегда это было известно.

Многочисленные открытия Араго были изложены в его сочинениях, из которых наиболее известна «Общедоступная астрономия», переведенная на русский и многие другие языки. Популярным стало и трехтомное сочинение Араго «Биографии знаменитых астрономов, физиков и геометров».

Одновременно с этим, будучи блестящим экспериментатором, Араго сконструировал целый ряд оптических приборов, получивших широкое использование в астрономии, физике и метеорологии: помимо полярископа (индикатора поляризованности принимаемого излучения), он создал уланометр (прибор для измерения голубизны неба) и фотометр (прибор для определения блеска звезд).

Когда английский физик сэр Чарльз Уитстон (1802–1875), исследуя скорость электричества и света, построил остроумный прибор из вращающихся зеркал, Араго быстро сообразил, что подобным устройством можно определить скорость света. Он долго вел исследования и примерно к 1850 году сумел добиться удовлетворительных результатов. К сожалению, к этому времени у Араго сильно ослабло зрение, и он откровенно заявил: «Я принужден ограничиться только изложением задачи и указанием на верные способы ее решения». После этого два талантливых французских физика – Арман‑Ипполит Физо (1819–1896) и Жан‑Бернар Фуко (1819–1868) – не замедлили воспользоваться его ценными указаниями и определили скорость света в атмосфере.

А еще по указаниям Араго работавший в Парижской обсерватории математик Урбен‑Жан‑Жозеф Леверье (1811–1877) провел математический анализ отклонений в движении планеты Уран, в результате чего была открыта планета Нептун.

В 1830 году Араго стал директором Парижской обсерватории и секретарем Парижской академии наук.

Но большая политика все же затронула его и очень отвлекла в последние двадцать лет его жизни от любимой науки. В 1830–1848 годах он был членом Палаты депутатов от округа Нижняя Сена, и там он примыкал к буржуазной республиканской оппозиции. После Февральской революции 1848 года его избрали в состав Временного правительства, где он занимал пост морского министра. После государственного переворота 1852 года, приведшего к восстановлению империи, республиканец Араго отказался от присяги Наполеону III. Ему было уже 67 лет, здоровье его было подорвано, а жизненные силы, не оставлявшие его даже в самых драматических обстоятельствах, иссякли.

Доминик‑Франсуа Араго умер в Париже 2 октября 1853 года. В родном Перпиньяне ему был поставлен памятник. Сегодня имя ученого носят бульвар и лицей в Париже, а также кратеры на Луне и на Марсе.

 

Могила Араго на парижском кладбище Пер‑Лашез

 

Таблица Менделеева

 

 

История науки знает множество крупных открытий, однако немногие из них можно сопоставить с тем, что было сделано Дмитрием Ивановичем Менделеевым (1834–1907), разносторонним ученым, которого иногда называют «русским Лавуазье». В самом деле, хотя со времени открытия периодического закона химических элементов прошло немало лет, никто не может сказать, когда будет до конца понято все глубочайшее содержание знаменитой «таблицы Менделеева».

Этому открытию способствовало накопление к концу 60‑х годов XIX века новых сведений о редких элементах, которые сделали очевидными, как говорил Менделеев, «их разносторонние связи между собой и другими элементами». Способствовало этому и многое другое, в частности, введение понятия о валентности (то есть о способности атомов химических элементов образовывать определенное число химических связей с атомами других элементов) [12], разработка новых способов определения атомных масс, обсуждение гипотезы о сложном строении атомов химических элементов английского химика Уильяма Праута (1785–1850) и т. д.

Уильям Праут в 1815 году предположил, что из самого легкого элемента (водорода) путем конденсации могут образовываться все остальные, а атомные массы всех элементов кратны массе атома водорода.

Эта гипотеза вызвала широкий отклик в научном сообществе. Однако после того как были проведены более точные определения атомных масс, выяснилось, что целые числа в значениях атомной массы встречаются крайне редко. Затем англичанин Уильям Крукс (1832–1919) предположил, что все элементы, в том числе и водород, образованы путем уплотнения некоей гипотетической первичной материи – протила. Якобы из протила некогда состояла масса мира. Сначала он был однородный, а потом, с понижением температуры, дифференцировался, превращаясь в наши обычные элементы (по Круксу, процесс этой эволюции был аналогичен тому, как происходила эволюция растений и животных). А очень малый атомный вес протила, по мнению Крукса, делал возможным возникновение дробных атомных весов.

Все это говорит о том, что в начале и в середине XIX века появилось немало попыток найти основу для систематизации элементов. В частности, было сделано предположение, что редкие элементы «все более и более пополняют пробелы» между известными телами природы и это позволяет составить из этих тел «непрерывный ряд, в котором всякий элемент имел бы свое определенное место».

Правильно решить эту проблему удалось Менделееву.

Дмитрий Иванович Менделеев родился в Тобольске в семье директора гимназии и попечителя народных училищ И. П. Менделеева.

 

Дмитрий Иванович Менделеев

Осенью 1841 года, то есть в шесть лет, Дмитрий поступил в Тобольскую гимназию с условием, что останется в первом классе на два года, пока ему не исполнится восемь. Через шесть лет умер отец Дмитрия, а еще через два года он окончил гимназию, и его мать, распродав имущество, вместе с детьми отправилась в Петербург. Ей очень хотелось, чтобы ее талантливый сын поступил в университет.

В 1850 году Менделеев‑младший был зачислен студентом Главного педагогического института по физико‑математическому факультету После получения высшего образования он с целью поправления здоровья уехал на юг, в Одессу Там он работал преподавателем математики, физики и естественных наук, а потом, в начале 1857 года, стал приват‑доцентом Петербургского университета.

Защита докторской диссертации у Менделеева состоялась 31 января 1865 года. После защиты Менделеев был утвержден профессором кафедры технической химии Петербургского университета.

 

 

...

Фигура Менделеева всегда была окружена всевозможными мифами.

Один из самых распространенных – якобы Менделеев сделал научное обоснование стандарта русской водки в 40 градусов. Связано это с тем, что тема его докторской диссертации звучала так: «Рассуждение о соединении спирта с водою».

Но к водке это не имело никакого отношения (работа была посвящена очень узкой научной проблематике, связанной с теорией растворов).

 

Принято считать, что свою периодическую таблицу элементов Менделеев увидел во сне, и ему оставалось лишь записать ее и обосновать. Конечно же, это такой же миф, как и пресловутое яблоко Ньютона. Сам Менделеев, кстати, этого сновидения не отрицал, однако рассказывал, что увидел свою таблицу после того, как не спал несколько ночей подряд, пытаясь изложить на бумаге уже сформировавшиеся в его мозгу представления.

Дмитрий Иванович говорил своему другу философу И. И. Лапшину, посетившему его незадолго перед открытием: «Все в голове сложилось, а выразить таблицей не могу».

Получается, что Менделеев работал как сумасшедший, три дня и три ночи не ложась спать. Доведя себя до крайней степени нервного истощения, он, как сейчас говорят, «отключился», и тут‑то его и посетило «озарение». «Вижу во сне таблицу, – рассказывал он потом, – где элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги. И только впоследствии оказалась нужной в одном месте поправка».

Три дня и три ночи? Скорее всего и это – художественная метафора. На самом деле, согласно воспоминаниям помощницы и ученицы Дмитрия Ивановича О. Э. Озаровской, сам Менделеев, отвечая однажды на вопрос, как же он все‑таки открыл периодическую систему, ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел, и вдруг – готово».

 

 

...

Как видим, вся эта история с вещим сном лишь подтверждает тот факт, что люди, которые очень интенсивно размышляют над какой‑либо проблемой, просто продолжают решать ее и во сне, только в этом случае к мыслительной работе подключается уже подсознание. Именно оно способно на такие величайшие научные «подвиги».

Кстати сказать, случаи, когда открытия «делались во сне», довольно широко известны. Достаточно вспомнить немецкого химика Фридриха‑Августа Кекуле фон Штрадоница (1829–1896), во сне расшифровавшего формулу молекулы бензола, увидев ее в виде правильного шестиугольника. О большой роли сновидений в своих открытиях упоминал и знаменитый Альберт Эйнштейн.

 

Конечно же, открытие Менделеева было совершено им не случайно, и уж точно не во сне. Всему этому предшествовала огромная работа, основанная на сочетании знаний физической стороны исследуемого явления, математической интуиции и философского осмысления.

Менделеев тщательно изучил описание свойств известных элементов и их соединений. После этого он сделал картонные карточки и на каждую нанес название элемента, его атомный вес, формулы соединений и основные свойства. После этого он очень долго раскладывал эти карточки подобно пасьянсу, пытаясь как‑то систематизировать химические элементы, расставив их в логическом порядке. Постепенно Менделеев понял, что с изменением атомного веса меняются и свойства элементов. А тем временем наступил февраль 1869 года. Получается, что к этому времени концепция уже была в голове ученого, ему оставалось лишь сделать финальное усилие, и оно было сделано его подсознанием.

17 февраля (1 марта) 1869 года Менделеев отправил в типографию рукопись, в которой был изложен его «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». Уже через две недели он представил в Русское химическое общество статью «Соотношение свойств с атомным весом элементов».

Отметим, что сообщение об открытии Менделеева было сделано редактором «Журнала Русского химического общества» профессором Н. А. Меншуткиным (1842–1907). Сам Дмитрий Иванович на этом заседании не присутствовал, так как находился в командировке в Тверской губернии.

В конечном итоге, Менделеев составил несколько вариантов периодической системы и на ее основе исправил атомные веса некоторых известных элементов.

С этого момента все другие проблемы отошли для него на задний план. В частности, он забросил работу над учебником «Основы химии» (труд этот будет закончен лишь в 1871 году). Распределение элементов в составленной им таблице постоянно казалось ему несовершенным. Каждый раз что‑то стояло не на своем месте, соответствующем свойствам отдельных элементов.

 

Д. И. Менделеев и его таблица

Закончилось все это тем, что Менделеев сумел предсказать существование нескольких до того неизвестных элементов и в одной из своих статей он даже подробно описал свойства трех из них: он назвал эти элементы экабором, экаалюминием и экакремнием, или «экасилицием» («эка» – на санскрите означает «первый», так что название, например, «экаалюминий» означает «первый аналог алюминия»). Так на свет появилась фундаментальная схема, которой до сих пор пользуются как школьники, так и ученые во всем мире.

Казалось бы, титаническая работа была завершена. Однако осенью 1875 года Менделеев случайно натолкнулся на доклад француза Поля‑Эмиля Лекока де Буабодрана (1838–1912), посвященный открытию нового элемента, названного им в честь Франции галлием. Французский химик даже указал удельный вес галлия – 4,7, но, согласно вычислениям Менделеева, у экаалюминия получалось 5,9. И тогда Дмитрий Иванович написал во Францию, указав, что, судя по свойствам открытого Лекоком де Буабодраном галлия, это есть не что иное, как предсказанный им в 1869 году «экаалюминий». И точно, более скрупулезные определения удельного веса галлия дали значение 5,94. Это вызвало настоящую сенсацию среди ученых, и имена Менделеева и Лекока де Буабодрана стали известны всему миру.

Вслед за этим ученые разных стран, вдохновленные первым подобным успехом, начали искать другие еще не открытые элементы, предсказанные Менделеевым.

И успехи не заставили себя очень долго ждать. В 1879 году шведский профессор‑химик Ларс‑Фредерик Нильсон (1840–1899) открыл новый элемент, полностью соответствовавший описанному Менделеевым экабору. В честь родной Скандинавии Нильсон назвал его скандием.

А в 1885 году немецкий химик Клеменс Винклер (1838–1904) открыл элемент германий, идентичный менделеевскому экакремнию.

Это уже был настоящий триумф, и со всех концов мира стали поступать сообщения об избрании Менделеева почетным членом различных университетов и академий (всего он получил свыше 130 дипломов и почетных званий).

Еще одним прекрасным подтверждением менделеевского закона стала открытая в 1894–1898 гг. британским химиком сэром Уильямом Рамзаем (1852–1916) группа инертных, то есть отличающихся крайне низкой химической активностью, газов (аргон, гелий, неон, ксенон, криптон), давшая возможность включить в систему так называемую «нулевую» группу. Позднее, когда ксенон вступил в химическую реакцию и стал известен его высший фторид, в котором валентность ксенона равна восьми, инертные газы перенесли в VIII группу, а «нулевая» перестала существовать.

Сам Менделеев по этому поводу в своих «Основах химии» отмечал:

 

 

...

«Писавши в 1871 году статью о приложении периодического закона к определению свойств еще неоткрытых элементов, я не думал, что доживу до оправдания этого следствия периодического закона, но действительность ответила иначе. Описаны были мною три элемента: экабор, экаалюминий и экасилиций, и не прошло 20 лет, как я имел уже величайшую радость видеть все три открытыми и получившими свои имена от тех трех стран, где найдены редкие минералы, их содержащие, и где сделано их открытие: галлия, скандия и германия. Лекока де Буабодрана, Нильсона и Винклера, их открывших, я, со своей стороны, считаю истинными укрепителями периодического закона. Без них он не был бы признан в такой мере, как это случилось ныне. В такой же мере я считаю Рамзая утвердителем справедливости периодического закона».

 

И все же, справедливости ради, возвращаясь к знаменитой таблице Менделеева, необходимо отметить, что у нее был еще один «автор». Его звали Юлиус‑Лотар фон Мейер (1830–1895), и был он доктором медицины, занимавшимся вопросами теоретической и физической химии и преподававшим в университетах Бреслау, Карлсруэ и Тюбингена. В 1864 году на основании данных об атомных весах он предложил таблицу, показывающую соотношение атомных весов для нескольких характерных групп элементов. В таблице Мейера было 28 элементов, размещенных в шесть столбцов согласно их валентностям. Немецкий ученый намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное изменение атомной массы в рядах сходных элементов.

В 1870 году Мейер опубликовал еще одну работу, называвшуюся «Природа химических элементов как функция их атомных весов» и содержавшую новую таблицу, состоявшую уже из девяти вертикальных столбцов (сходные элементы располагались в горизонтальных рядах, а некоторые ячейки таблицы Мейер оставил незаполненными).

 

Юлиус‑Лотар фон Мейер

По мнению специалистов, таблица Мейера 1870 года была в некоторых отношениях совершеннее первых вариантов таблицы Менделеева. При этом сам Дмитрий Иванович в одной из своих статей заявил, что таблица Мейера представляла собой только простое сопоставление элементов, на что Мейер отвечал, что его таблица «в существенном идентична данной Менделеевым». Д. И. Менделеев возмущенно писал:

 

 

...

«Господин Мейер раньше меня не имел в виду периодического закона, а после меня ничего нового к нему не прибавил».

 

Более того, согласно Менделееву, Мейер не стал развивать свое открытие и даже не сделал попыток на его основе дать предсказания свойств еще не открытых элементов. Свое мнение по этому вопросу Дмитрий Иванович сформулировал так:

 

 

...

«По праву творцом научной идеи должно того считать, кто понял не только философскую, но и практическую сторону дела, сумел так его поставить, что в новой истине все могли убедиться, и она стала всеобщим достоянием. Тогда только идея, как материя, не пропадет».

 

Тем не менее многие, особенно в Германии (это и понятно), считают именно Мейера первооткрывателем периодической системы.

Как бы то ни было, в 1882 году лондонское «Королевское общество» присудило золотые медали совместно Менделееву и Мейеру. Наградам сопутствовала формулировка: «За открытие периодических соотношений атомных весов».

Следует также упомянуть об английском химике Джоне Ньюлендсе (1837–1898). В 1864 году он тоже составил таблицу, в которой расположил все известные тогда элементы в порядке увеличения их атомных весов. Пронумеровав элементы (элементы, имевшие одинаковые веса, имели у него один и тот же номер), Ньюлендс сделал следующий вывод:

 

 

...

«Разность в номерах наименьшего члена группы и следующего за ним равна семи; иначе говоря, восьмой элемент, начиная с данного элемента, является своего рода повторением первого, подобно восьмой ноте октавы в музыке».

 

Через год Ньюлендс опубликовал новую таблицу, назвав ее «законом октав», который формулировался следующим образом:

 

 

...

«Номера аналогичных элементов, как правило, отличаются или на целое число семь, или на кратное семи; другими словами, члены одной и той же группы соотносятся друг с другом в том же отношении, как и крайние точки одной или больше октав в музыке».

 

После 1866 года Джон Ньюлендс больше не предпринимал попыток дальнейшей разработки своей систематики, тем не менее именно его в Англии считают тем, кто впервые высказал идею о периодичности изменения свойств элементов.

 

Джон Ньюлендс

В любом случае, в 1887 году, через пять лет после Менделеева и Мейера, лондонское «Королевское общество» присудило свою медаль и ему. Награде сопутствовала формулировка: «За открытие периодического закона химических элементов». Дмитрий Иванович на это отреагировал следующей оценкой работы Ньюлендса:

 

 

...

«В этих трудах видны некоторые зародыши периодического закона».

 

И все же у знаменитого русского естествоиспытателя К. А. Тимирязева (1843–1920) мы читаем:

 

 

...

«Едва ли не самым выдающимся шагом вперед собственно химии явилась возможность естественной классификации элементов в периодическую систему (Ньюландс, Лотар Мейер и особенно Менделеев), дозволяющих рассматривать все свойства как функции их атомного веса».

 

Особенно Менделеев…

В конечном итоге, чтобы не путаться во взаимных претензиях, в большинстве химических сообществ западного мира периодическая таблица не носит имя первооткрывателя, а словосочетание «таблица Менделеева» существует только в России. Сегодня у нас в стране имя Менделеева носит Российский химико‑технологический университет. Именем Менделеева названа одна из станций московского метро, а также улицы в Москве, Санкт‑Петербурге, Калининграде, Воронеже, Екатеринбурге, Владимире, Владивостоке, Липецке, Новосибирске, Туле, Уфе, Ярославле, Киеве, Харькове, Минске и других городах.

«Основы химии» при жизни ученого издавались в России восемь раз. Кроме того, они многократно выходили в переводах на английский, немецкий и французский языки. Заслуги Дмитрия Ивановича отмечались и за границей. Например, французский химик Анри‑Луи ле Шателье (1850–1936) еще в 1926 году отмечал, что все учебники химии были написаны по одному образцу, и «заслуживает быть отмеченной лишь единственная попытка действительно отойти от классических традиций – это попытка Менделеева».

 

Памятник Д. И. Менделееву в Санкт‑Петербурге

За свою жизнь Менделеев опубликовал более 500 фундаментальных работ по химии, физике, метрологии, воздухоплаванию, метеорологии, сельскому хозяйству, экономике и т. д. В 1899 году сам он написал:

 

 

...

«Сам удивляюсь, чего только я не делывал в своей научной жизни. И сделано, думаю, недурно».

 

Дмитрий Иванович Менделеев умер в Петербурге в 1907 году. Когда он придумывал свою таблицу, было известно лишь 63 химических элемента. В год смерти ученого был открыт лютеций, получивший 71‑й номер. Сотым элементом стал фермий, впервые полученный в конце 1952 года. А в 1955 году американские ученые синтезировали элемент № 101, и ему было дано название менделевий (Md) – в честь Д. И. Менделеева.

Интересно отметить, что по состоянию на 2010 год было известно уже 118 химических элементов, из них 94 было обнаружено в природе, а остальные 24 получены искусственно в результате ядерных реакций.

 

Date: 2015-09-05; view: 545; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию