Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Править]Волны де Бройля





Физика атомов, молекул и их коллективов, в частности кристаллов, а также атомных ядер и элементарных частиц изучается в квантовой механике. Квантовые эффекты являются существенными, если характерное значение действия (произведение характерной энергии на характерное время или характерного импульса на характерное расстояние) становится сравнимым с (постоянная Планка). Если частицы движутся со скоростями много меньше, чем скорость света в вакууме , то применяется нерелятивистская квантовая механика; при скоростях близких к — релятивистская квантовая механика.

В основе квантовой механики лежат представления Планка о дискретном характере изменения энергии атомов, Эйнштейна офотонах, данные о квантованности некоторых физических величин (например, импульса и энергии), характеризующих в определенных условиях состояния частиц микромира.

Де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом . Все частицы, имеющие конечный импульс , обладают волновыми свойствами, в частности, подвержены интерференции и дифракции.

Формула де Бройля устанавливает зависимость длины волны , связанной с движущейся частицей вещества, от импульса частицы:

где — масса частицы, — ее скорость, — постоянная Планка. Волны, о которых идет речь, называются волнами де Бройля.

Другой вид формулы де Бройля:

где — волновой вектор, модуль которого — волновое число — есть число длин волн, укладывающихся на единицах длины, — единичный вектор в направлении распространения волны, Дж·с.

Длина волны де Бройля для нерелятивистской частицы с массой , имеющей кинетическую энергию

В частности, для электрона, ускоряющегося в электрическом поле с разностью потенциалов вольт

Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приемниках частиц.

Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение волновых свойств оказывается невозможным. Впрочем, наблюдать квантовые эффекты можно и в макроскопическом масштабе, особенно ярким примером этому служат сверхпроводимость и сверхтекучесть.

Фазовая скорость волн де Бройля свободной частицы

где — циклическая частота, — кинетическая энергия свободной частицы, — полная (релятивистская) энергия частицы, — импульс частицы, , — её масса и скорость соответственно, — длина дебройлевской волны. Последние соотношения — нерелятивистское приближение. Зависимость фазовой скоростидебройлевских волн от длины волны указывает на то, что эти волны испытывают дисперсию. Фазовая скорость волны де Бройля хотя и больше скорости света, но относится к числу величин, принципиально неспособных переносить информацию (является чисто математическим объектом).

Групповая скорость волны де Бройля равна скорости частицы :

.

Связь между энергией частицы и частотой волны де Бройля

Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистической закономерности, согласно которой частицы попадают в определенные места в приёмниках — туда, где интенсивность волны де Бройляоказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.

Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

§ Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше скорость волны в среде:

§ у света красного цвета скорость распространения в среде максимальна, а степень преломления — минимальна,

§ у света фиолетового цвета скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.
Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

§ Белый свет разлагается в спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.
Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).
Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видео-объективов.
Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

…,


где:

§ — длина волны в вакууме;

§ a, b, c, … — постоянные, значения которых для каждого вещества должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши.

[править]Дисперсия света в природе и искусстве

http://commons.wikimedia.org/wiki/File:CZ_brilliant.jpg?uselang=ru

http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:CZ_brilliant.jpg
Из-за дисперсии можно наблюдать разные цвета.

§ Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.

§ Благодаря дисперсии света, можно наблюдать цветную «игру света» на граняхбриллианта и других прозрачных гранёных предметах или материалах.

§ В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.

§ Разложение света в спектр (вследствие дисперсии) при преломлении в призме - довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.
Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн (интерференция вторичных волн). Общим свойством всех эффектов дифракции является зависимость степени её проявления от соотношения между длиной волны и размером ширины волнового фронта, либо непрозрачного экрана на пути его распространения, либо неоднородностей структуры самой волны.
Поскольку в большинстве случаев, имеющих практическое значение, это ограничение ширины волнового фронта имеет место всегда, постольку явление дифракции всегда сопровождает любой процесс распространения волн.
Так, именно явлением дифракции задаётся предел разрешающей способности любого оптического прибора, создающего изображение, который невозможно преступить принципиально при заданной ширине спектра используемого для построения изображения излучения[http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%80%D0%B0%D0%BA%D1%86%D0%B8%D1%8F#cite_note-.D0.9B.D0.B0.D0.BD.D0.B4.D1.81.D0.B1.D0.B5.D1.80.D0.B3..D0.9E.D0.BF.D1.82.D0.B8.D0.BA.D0.B0.-1|[1]].
В ряде случаев, в особенности при изготовлении сложных оптических систем, разрешающая способность ограничивается не дифракцией, но аберрациями, как правило, возрастающими при увеличении диаметра объектива. Отсюда происходит известное фотографам явление увеличения до определённых пределов качества изображения при диафрагмировании объектива.
При распространении излучения в оптически неоднородных средах дифракционные эффекты заметно они проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3—4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики. С другой стороны, если размер неоднородностей среды сравним с длиной волны, в таком случае дифракции проявляет себя в виде эффекта рассеяния волн.[http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%80%D0%B0%D0%BA%D1%86%D0%B8%D1%8F#cite_note-2|[2]]
Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.
Дифракция волн может проявляться:

§ в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;

§ в разложении волн по их частотному спектру;

§ в преобразовании поляризации волн;

§ в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Тонкости в толковании термина «дифракция»
В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её.
Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).
Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.
Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика, градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.
Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.
Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики.
При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является.
Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.
Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).
Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)
Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.

[править]Частные случаи дифракции
Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля, либо плоской волны на щели или системе отверстий -дифракция Фраунгофера

[править]Дифракция на щели

http://commons.wikimedia.org/wiki/File:Diffraction1.png?uselang=ru

Распределение интенсивности света при дифракции на щели

В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса.
Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны λ, падающую на экран с щелью ширины a.
Будем считать, что щель находится в плоскости x′-y′ с центром в начале координат. Тогда может предполагаться, что дифракция производит волну ψ, которая расходится радиально. Вдали от разреза можно записать:
пусть (x′,y′,0) — точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от до), и бесконечна в y направлении ([, ]).
Расстояние r от щели определяется как:::
Предполагая случай дифракции Фраунгофера, получим условие. Другими словами, расстояние до точки наблюдения много больше характерного размера щели (ширины). Используя биноминальное разложение и пренебрегая слагаемыми второго и выше порядков малости, можно записать расстояние в виде:::
Видно, что 1/ r перед уравнением не осциллирует, то есть даёт малый вклад в интенсивность по сравнению с экспоненциальным множителем. И тогда его можно записать приближённо как z.

   
   
   

Здесь мы введём некую константу 'C', которой обозначим все постоянные множители в предыдущем уравнении. Она, в общем случае может быть комплексной, но это не важно, так как в конце нас будет интересовать только интенсивность, и нам будет интересен только квадрат модуля.
В случае дифракции Фраунгофера мало, поэтому. такое же приближение верно и для. Таким образом, считая, приводит к выражению:

   
   

Используя формулу Эйлера и её производную: и.

где ненормированная синкус функция определена как.
Подставляя в последнее выражение для амплитуды, можно получить ответ для интенсивности в виде волны в зависимости от угла θ:

Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом. Нередко, под светом понимают не тольковидимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» — ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до780 нанометров[1], что соответствует частотам от 790 до 385 терагерц, соответственно.

Раздел физики, в котором изучается свет, носит название оптика.

Свет может рассматриваться либо как электромагнитная волна, скоростьраспространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.

Date: 2015-09-05; view: 551; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию