Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Механическая картина мира. Полноценной наукой физика стала в XVII в., когда появилась общественная необходимость в более глубоком изучении природы





Полноценной наукой физика стала в XVII в., когда появилась общественная необходимость в более глубоком изучении природы. До этого понимание природы основывалось на обыденных знаниях и натурфилософии. Дальнейшее развитие общественного производства было

46

невозможным без более глубокого понимания явлений природы.

При переходе от обыденного к научному пониманию природы большую роль сыграли материалистические идеи. В трудах П. Гассенди и Г. Галилея был восстановлен атомизм древнегреческих философов. При этом на первое место выдвигалось понятие движения. Р. Декарт считал, что оно обусловливает все явления природы. Подлинно революционной была гипотеза Галилея о возможности движения без двигателя (закон инерции). Наконец, И. Ньютон завершил построение новой, революционной для того времени картины природы, сформулировав основные идеи, понятия и принципы, составившие механическую картину мира.

И. Ньютон начинает свой основной трактат («Математические начала натуральной философии») с изложения основных понятий картины мира. Исходя из атомистических представлений о материи, он вводит понятие массы как количества материи, наделяет тела «внутренним врожденным свойством двигаться равномерно и прямолинейно», а отклонение от этого состояния движения связывает с действием на тело «внешней силы»3. При этом И. Ньютон выдвигает «гипотезу о тяготении» как универсальном свойстве всех тел «тяготеть друг к другу»4. Поставив перед собой задачу объяснить все явления по наблюдаемым движениям, И. Ньютон дополняет картину мира своим пониманием времени, пространства и движения, которые существуют абсолютно, т. е. независимо от материи5.

Как видно, формулируя общие исходные начала своего труда, И. Ньютон изложил определенные физические представления о материи и движении, пространстве и времени, взаимодействии и закономерности в соответствии с философскими идеями Г. Галилея и П. Гассенди (атомистические представления о материи), Р. Декарта, придававшего первостепенное значение движению, и Т. Гоббса, доказывавшего объективность протяженности. При этом одной из ведущих философских идей, которой руководствовался И. Ньютон в своих исследова-

3 См. Ньютон И. Математические начала натуральной философии. Пг., 1915, с. 22-25.

4 См. там же, с. 3.

5 См. там же, с. 30 — 35.

ниях, была идея единства и универсальной взаимосвязи явлений б.

На основе механической картины мира Ньютон сформулировал законы движения, которые он считал фундаментальными законами мироздания. Создание механики способствовало ускоренному развитию теоретических методов исследования природы. Как отмечают историки физики, с 1690 по 1750 г. особенно быстрыми темпами развивается математическая физика7.

В теоретическом базисе механики И. Ньютона находилась система материальных точек. Исходя из ньютоновских представлений о природе, механической картины мира, Л. Эйлер и Я. Бернулли разработали ряд новых физических теорий - теорию движения твердого тела, теорию упругости и гидродинамику. Ж. Л. Лагранж систематизировал механику и поставил перед собой задачу объяснения всех явлений мироздания чисто аналитическим путем, руководствуясь механикой и механической картиной мира. В конце XVIII и начале XIX в. П. С. Лаплас, реализуя программу Лагранжа в объяснении мироздания, разработал «земную», «небесную» и «молекулярную» механику.

Успехи механической теории в объяснении явлений природы, а также их большое значение для развития техники, для конструирования различных машин и двигателей привели к абсолютизации механической картины мира. Она стала рассматриваться в качестве универсальной научной картины мироздания. Весь мир (включая и человека) понимался как совокупность огромного числа неделимых частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия). Согласно этому принципу, любые события жестко предопределены законами механики, так что если бы существовал, по выражению П. Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять».

В то же время в конце XVIII - начале XIX в. в физике накапливались эмпирические данные, противоречащие механической картине мира. Так, наряду с рассмотре-

6 См. Ньютон И. Математические начала натуральной философии. Пг., 1915, с. 36-52.

7 См. Розенбергер Ф История физики, т. 2. М. — Л., 1937, с. 182.

8 См. Лаплас П. Опыт, философии теории вероятностей. М., 1908.

нием системы материальных точек (что полностью соответствовало корпускулярным представлениям о материи) пришлось ввести понятие сплошной среды, связанное по сути дела уже не с корпускулярными, а с континуальными представлениями о материи. Тем самым обнаружилось противоречие между механической картиной мира и некоторыми фактами опыта. Для объяснения световых явлений вводилось понятие эфира — особой тонкой и абсолютно непрерывной «световой материи». Однако уже Ньютон пытался показать, что эти явления можно объяснить, исходя из тех принципов, которые находились в основе созданной им механики. Он разработал корпускулярную теорию света, расширив тем самым содержание механической картины мира.

В XIX в. методы механики были распространены на область тепловых явлений, электричества и магнетизма. Казалось бы, все это свидетельствовало о больших успехах механического понимания мира в качестве общей исходной основы науки. Однако при попытке выйти за пределы механики системы точек приходилось вводить все новые и новые искусственные допущения, которые постепенно готовили крушение механической картины мира. Так, для объяснения теплоты было введено понятие «теплорода», т. е. особой тонкой сплошной материи, для объяснения электричества и магнетизма предположили существование особых непрерывных видов материи — «электрической» и «магнитной» жидкости. Ф. Энгельс критиковал эмпириков, которые думали, что объяснили все явления, подведя под них какое-нибудь неизвестное вещество: световое, тепловое или электрическое. Эти «воображаемые вещества теперь можно считать устраненными»9, — писал он. И действительно, позднее на основе механической картины мира была построена кинетическая теория тепла, сформулирован закон сохранения и превращения энергии, и таким образом «теплород» был отброшен.

Но механический подход к таким явлениям, как свет, электричество и магнетизм, оказался неприемлемым. Опытные факты искусственно подгонялись под механическую картину мира. Несмотря на множество попыток, механическую модель эфира как материального носителя света, электричества и магнетизма так и не удалось по-

9 Маркс К., Энгельс Ф. Соч., т. 20, с 12.

49

строить. Однако в рамках этой картины мира данному обстоятельству не придавалось принципиального значения, и попытки построить атомистическую модель эфира продолжались даже в XX в. Считая, что такая модель все же в принципе возможна, и ссылаясь на успехи механической картины мира, в частности кинетической теории тепла и статистической механики, многие крупнейшие физики второй половины XIX и даже начала XX в. полагали, что механистическое миропонимание является единственно научным и универсальным. Так, по свидетельству М. Планка, его учитель Ф. Жолли заявлял:

«Конечно, в том или ином уголке можно еще заметить или удалить пылинку или пузырек, но система, как целое, стоит довольно прочно, и теоретическая физика заметно приближается к той степени совершенства, какою уже столетия обладает геометрия» ю.

Не увенчавшиеся успехом попытки объяснить на основе механической картины мира явления света, электричества и магнетизма свидетельствовали о том, что противоречия между общим физическим знанием и частным — данными опыта — фактически оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира. Но приверженность физиков к старым догмам мешала пониманию этого принципиально важного обстоятельства.

Date: 2015-09-05; view: 533; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию