Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Связь между дирекционными углами предыдущей и последующей линий





На рис. 25 представлена схема определения дирекционных углов сторон теодолитного хода AB. Известен дирекционный угол исходной стороны α0 и измерены геодезическим прибором теодолитом углы β1, β2, β3, лежащие справа по ходу от А к В.

Рис. 25. Схема определения дирекционных углов сторон теодолитного хода

Найдём дирекционные углы α1, α2, α3 остальных сторон хода.

На основании зависимости между прямыми и обратными дирекционными углами можем написать:

α1 + β1 = α0 + 180° из данного выражения следует, что α1 = α0 + 180° – β1 (1).

Аналогично вычисляются дирекционные углы последующих сторон теодолитного хода:

α2 + β2 = α1 + 180° → α2 = α1 + 180° – β2 (2)

α3 + β3 = α2 + 180° → α3 = α2 + 180° – β3 (3)

...............................................................................

αn + βn = αn-1 + 180° → αn = αn-1 + 180° – βn(n)

То есть, дирекционный угол последующей стороны равен дирекционному углу предыдущей стороны плюс 180° и минус угол, лежащий справа по ходу.

Для получения контрольной формулы в выражение (2) подставим значение α1, из выражения (1)

α2 = α0 + 2 ∙ 180° – (β1 + β2) .

Если продолжить аналогичные действия для последующих сторон теодолитного хода, то получим

αn = α0 + n ∙ 180° – (β1 + β2 + β3 + ... + βn) .

или

αn – α0 = n ∙ 180° – ∑β .

или

α0 – αn = ∑β – n ∙ 180° .

Эта формула может служить контрольной при вычислении дирекционных углов по увязанным углам β.

Если же вместо суммы исправленных углов подставить сумму измеренных углов ∑β, то та же формула позволит определить невязку fβ измеренных углов теодолитного хода, если дирекционные углы α0 и αn начальной и конечной сторон хода известны

fβ = ∑β – n ∙ 180° – (α0 – αn).

Иногда дирекционные углы вычисляют по углам, лежащим слева по ходу от А до В (λ1, λ2, …, λn).

β1 = 360° – λ1

β2 = 360° – λ2

........................

βn = 360° – λn

Подставим эти значения в выражения (1), (2), ..., (n) получим

α1 = α0 – 180° + λ1

α2 = α1 – 180° + λ2

.................................

αn = αn-1 – 180° + λn.

Для проверки правильности вычисления дирекционных углов по углам λ, лежащим слева по ходу, используют выражения

αn – α0 = ∑λ – n ∙ 180°

или

αn – α0 = ∑λ + n ∙ 180°.

Тогда невязка fβ определяется по формуле

fβ = ∑λ + n ∙ 180° – (αn – α0).

 

Лекция 3. Геодезическая съемка. Рельеф, его изображение на картах и планах.
Цифровые модели местности

3.1. Геодезическая съемка. План, карта, профиль

3.2. Рельеф. Основные формы рельефа

3.3. Изображение рельефа на планах и картах

3.4. Цифровые модели местности

3.5. Задачи, решаемые на планах и картах

3.6. Вопросы для самоконтроля

Геодезическая съемка. План, карта, профиль

Чтобы спроектировать линию местности на горизонтальную плоскость, нужно определить её горизонтальное проложение (проекцию линии на горизонтальную плоскость) и уменьшить его до определенного масштаба. Для проектирования на горизонтальную плоскость какого-либо многоугольника (рис. 26) измеряют расстояния между его вершинами и горизонтальные проекции его углов.

Совокупность линейных и угловых измерений на земной поверхности называется геодезической съемкой. По результатам геодезической съемки составляют план или карту.

Рис. 26. Проектирование участка земной поверхности на горизонтальную плоскость

План – чертеж, на котором в уменьшенном и подобном виде изображается горизонтальная проекция небольшого участка местности.

Карта – уменьшенное и искаженное, вследствие влияния кривизны Земли, изображение горизонтальной проекции значительной части или всей земной поверхности, построенное по определенным математическим законам.

Таким образом, и план, и карта – это уменьшенные изображения земной поверхности на плоскости. Различие между ними состоит в том, что при составлении карты проектирование производят с искажениями поверхности за счет влияния кривизны Земли, на плане изображение получают практически без искажений.

В зависимости от назначения планы и карты могут быть контурные и топографические. На контурных планах и картах условными знаками изображают ситуацию, т.е. только контуры (очертания) горизонтальных проекций местных предметов (дорог, строений, пашен, лугов, лесов и т.п.).

На топографических картах и планах кроме ситуации изображают ещё рельеф местности.

Для проектирования железных, шоссейных дорог, каналов, трасс, водопроводов и других сооружений необходимо иметь вертикальный разрез или профиль местности.

Профилем местности называется чертеж, на котором изображается в уменьшенном виде сечение вертикальной плоскостью поверхности Земли по заданному направлению.

Как правило, разрез местности (рис. 27, а) представляет собой кривую линию ABC...G. На профиле (рис. 27, б) она строится в виде ломаной линии abc...g. Уровенную поверхность изображают прямой линией. Для большей наглядности вертикальные отрезки (высоты, превышения) делают крупнее, чем горизонтальные (расстояния между точками).

Рис. 27. Вертикальный разрез (а) и профиль (б) местности

 








Date: 2015-09-19; view: 566; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.006 sec.) - Пожаловаться на публикацию