Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Микромир: концепции современной физики





4.2.1. Квантово-механическая концепция описания микромира

При переходе к исследованию микромира обнаружилось, что физическая реальность едина и нет пропасти между веществом и полем.

Изучая микрочастицы, ученые столкнулись с парадоксальной с точки зрения классической науки ситуацией: одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства.

Первый шаг в этом направлении был сделан немецким физиком М. Планком. Как известно, в конце XIX в. в физике возникла трудность, которая получила название «ультрафиолетовой катастрофы». В соответствии с расчетами по формуле классической электродинамики интенсивность теплового излучения абсолютно черного тела должна была неограниченно возрастать, что явно противоречило опыту. В процессе работы по исследованию теплового излучения, которую М. Планк назвал самой тяжелой в своей жиз-


ни, он пришел к ошеломляющему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях — квантах. Энергия квантов определяется через число колебаний соответствующего вида излучения и универсальную естественную константу, которую М. Планк ввел в науку под символом h: Е= h у.

Если введение кванта еще не создало настоящей квантовой теории, как неоднократно подчеркивал М. Планк, то все же 14 декабря 1900 г., в день опубликования формулы, был заложен ее фундамент. Поэтому в истории физики этот день считается днем рождения квантовой физики. А поскольку понятие элементарного кванта действия служило в дальнейшем основой для понимания всех свойств атомной оболочки и атомного ядра, то 14 декабря 1900 г. следует рассматривать и как день рождения всей атомной физики и начало новой эры естествознания.

Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его, был А. Эйнштейн. В 1905 г. он перенес гениальную идею квантованного поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете.

Представление о свете как о потоке быстро движущихся квантов было чрезвычайно смелым, почти дерзким, в правильность которого вначале поверили немногие. Прежде всего, с расширением квантовой гипотезы до квантовой теории света был не согласен сам М. Планк, относивший свою квантовую формулу только к рассматриваемым им законам теплового излучения черного тела.

А. Эйнштейн предположил, что речь идет о естественной закономерности всеобщего характера. Не оглядываясь на господствующие в оптике взгляды, он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света.

Квантовая теория света, или фотонная теория А Эйнштейна, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывную структуру. Свет может рассматриваться как поток неделимых энергетических зерен, световых квантов, или фотонов. Их энергия определяется элементарным квантом действия Планка и соответствующим чис-


лом колебаний. Свет различной окраски состоит из световых квантов различной энергии.

Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Эксперименты показали, что наличие или отсутствие фотоэффекта определяется не интенсивностью падающей волны, а ее частотой. Если предположить, что каждый электрон вырывается одним фотоном, то становится ясно следующее: эффект возникает лишь в том случае, если энергия фотона, а следовательно, и его частота, достаточно велика для преодоления сил связи электрона с веществом.

Правильность такого толкования фотоэлектрического эффекта (за эту работу Эйнштейн в 1922 г. получил Нобелевскую премию по физике) через 10 лет получила подтверждение в экспериментах американского физика Р.Э. Милликена. Открытое в 1923 г. американским физиком А.Х. Комптоном явление (эффект Комптона), которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и уже окончательно подтвердило квантовую теорию света. Эта теория относится к наиболее подтвержденным экспериментально физическим теориям. Но волновая природа света была уже твердо установлена опытами по интерференции и дифракции.

Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте — корпускулярные. При этом фотон оказался корпускулой совершенно особого рода. Основная характеристика его дискретности — присущая ему порция энергии — вычислялась через чисто волновую характеристику — частоту у (Е= Ну).

Как и все великие естественно-научные открытия, новое учение о свете имело фундаментальное теоретико-познавательное значение. Старое положение о непрерывности природных процессов, которое было основательно поколеблено М. Планком, Эйнштейн исключил из гораздо более обширной области физических явлений.

Развивая представления М. Планка и А. Эйнштейна, французский физик Луи де Брошь в 1924 г.выдвинул идею о волновых свойствах материи. В своей работе «Свет и материя» он писал о необходимости использовать волновые и корпускулярные пред-


ставления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.

Л. де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам.

Согласно де Бройлю, любому телу с массой т, движущемуся со скоростью V, соответствует волна:

Фактически аналогичная формула была известна раньше, но только применительно к квантам света — фотонам.

В 1926 г. австрийский физик Э. Шредингер нашел математическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера. Английский физик П. Дирак обобщил его.

Смелая мысль Л. де Бройля о всеобщем «дуализме» частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.

Волны материи, которые первоначально представлялись как наглядно-реальные волновые процессы по типу волн акустики, приняли абстрактно-математический облик и получили благодаря немецкому физику М. Борну символическое значение как «волны вероятности».

Однако гипотеза де Бройля нуждалась в опытном подтверждении. Наиболее убедительным свидетельством существования волновых свойств материи стало обнаружение в 1927 г. дифракции электронов американскими физиками К. Дэвиссоном и Л. Джер-мером. В дальнейшем были выполнены опыты по обнаружению дифракции нейтронов, атомов и даже молекул. Во всех случаях результаты полностью подтверждали гипотезу де Бройля. Еще более важным было открытие новых элементарных частиц, предсказанных на основе системы формул развитой волновой механики.

Признание корпускулярно-волнового дуализма в современной физике стало всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Тот факт, что один и тот же объект проявляется и как частица и как волна, разрушал традиционные представления.

Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как вол-


на распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления.

Окончательное формирование квантовой механики как последовательной теории произошло благодаря работам немецкого физика В. Гейзенберга, установившего принцип неопределенности? и датского физика Н. Бора, сформулировавшего принцип дополнительности, на основании которых описывается поведение микрообъектов.

Суть соотношения неопределенностей В. Гейзенберга заключается в следующем. Допустим, ставится задача определить состояние движущейся частицы. Если бы можно было воспользоваться законами классической механики, то ситуация была бы простой: следовало лишь определить координаты частицы и ее импульс (количество движения). Но законы классической механики для микрочастиц применяться не могут: невозможно не только практически, но и вообще с одинаковой точностью установить место и величину движения микрочастицы. Только одно из этих двух свойств можно определить точно. В своей книге «Физика атомного ядра» В. Гей-зенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра — координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и в принципе не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения микрочастицы, например, при рассеивании электронов. При экспериментах, направленных на точное опреде-


ление места, напротив, используется волновое объяснение, в частности, при прохождении электронов через тонкие пластинки или при наблюдении отклонения лучей.

Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин «канонически связанных», т.е. положения и величины движения частицы.

Фундаментальным принципом квантовой механики наряду с соотношением неопределенностей является принцип дополнительности, которому Н. Бор дал следующую формулировку: «Понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего»1.

Противоречия корпускулярно-волновых свойств микрообъектов являются результатом неконтролируемого взаимодействия микрообъектов и макроприборов. Имеется два класса приборов: в одних квантовые объекты ведут себя как волны, в других — подобно частицам. В экспериментах мы наблюдаем не реальность как таковую, а лишь квантовое явление, включающее результат взаимодействия прибора с микрообъектом. М. Борн образно заметил, что волны и частицы — это «проекции» физической реальности на экспериментальную ситуацию.

Ученый, исследующий микромир, превращается, таким образом, из наблюдателя в действующее лицо, поскольку физическая реальность зависит от прибора, т.е. в конечном счете от произвола наблюдателя. Поэтому Н. Бор и считал, что физик познает не саму реальность, а лишь собственный контакт с ней.

Существенной чертой квантовой механики является вероятностный характер предсказаний поведения микрообъектов, которое описывается при помощи волновой функции Э. Шредингера. Волновая функция определяет параметры будущего состояния микрообъекта с той или иной степенью вероятности. Это означает, что при проведении одинаковых опытов с одинаковыми объектами каждый раз будут получаться разные результаты. Однако некоторые значения будут более вероятными, чем другие, т.е. будет известно лишь вероятностное распределение значений.

С учетом факторов неопределенности, дополнительности и вероятности Н. Бор дал так называемую «копенгагенскую» интер-

Герник Ф. Пионеры атомного века. — М.: Прогресс, 1974. — С. 267.


104

претацию сути квантовой теории: «Раньше было принято считать, что физика описывает Вселенную. Теперь мы знаем, что физика описывает лишь то, что мы можем сказать о Вселенной»1.

Позицию Н. Бора разделяли В. Гейзенберг, М. Борн, В. Паули и ряд других менее известных физиков. Сторонники копенгагенской интерпретации квантовой механики не признавали причинность или детерминизм в микромире и считали, что в основе физической реальности лежит фундаментальная неопределенность — индетерминизм.

Представителям копенгагенской школы резко возражали Г.А. Лоренц, М. Планк, М. Лауэ, А. Эйнштейн, П. Ланжевен и др. А. Эйнштейн писал по этому поводу М. Борну: «В наших научных взглядах мы развились в антиподы. Ты веришь в играющего в кости Бога, а я — в полную закономерность объективно сущего... В чем я твердо убежден, так это в том, что в конце концов остановятся на теории, в которой закономерно связанными будут не вероятности, но факты»2. Он выступал против принципа неопределенности, за детерминизм, против той роли, которую в квантовой механике отводят акту наблюдения. Дальнейшее развитие физики показало правоту Эйнштейна, который считал, что квантовая теория в существующем виде просто является незаконченной: то, что физики пока не могут избавиться от неопределенности, свидетельствует не об ограниченности научного метода, как утверждал Н. Бор, а лишь о незавершенности квантовой механики. Эйнштейн приводил все новые и новые аргументы в подтверждение своей точки зрения.

Наиболее известен так называемый парадокс Эйнштейна — Подольского — Розена, или ЭПР-парадокс, при помощи которого они хотели доказать незавершенность квантовой механики. Парадокс представляет собой мысленный эксперимент: что случится, если состоящая из двух протонов частица распадется так, что протоны разлетятся в противоположные стороны? Из-за общности происхождения их свойства связаны или, как говорят физики, коррелируют друг с другом. По закону сохранения импульса, если один протон полетит вверх, то второй — обязательно вниз. Измерив импульс одного протона, мы обязательно узнаем и импульс другого, даже если он улетел на другой конец Вселенной. Между частицами

Уилсон Р.А. Квантовая психология / Пер. с англ. под ред Я. Невстуева. — Киев: Янус, 1999. - С. 81. 2 Цит.по: Вейник А.И. Термодинамика. — Минск: Высшая школа, 1968. — С. 435.


существует нелокальная связь, которую Эйнштейн назвал «действием призраков на расстоянии», при котором каждая частица в каждый любой момент времени знает, где находится другая и что с ней происходит.

ЭПР-парадокс несовместим с неопределенностью, постулируемой в квантовой механике. Эйнштейн считал, что есть какие-то скрытые параметры, которые не учтены. Вопросы: существует ли детерминизм и причинность в области микромира; полна ли квантовая механика; существуют ли скрытые параметры, которые она не учитывает, были предметом дискуссий физиков более полувека и нашли свое разрешение на теоретическом уровне только в конце XX в.

В 1964 г. Дж. С. Бела обосновал положение, согласно которому квантовая механика предсказывает более сильную корреляцию между взаимно связанными частицами, чем та, о которой говорил Эйнштейн.

Теорема Белла утверждает: если некоторая объективная Вселенная существует и если уравнения квантовой механики структурно подобны этой Вселенной, то между двумя частицами, когда-либо входившими в контакт, существует некоторый вид нелокальной связи1. Суть теоремы Белла заключается в том, что не существует изолированных систем: каждая частица Вселенной находится в «мгновенной» связи со всеми остальными частицами. Вся система, даже если ее части разделены огромными расстояниями и между ними отсутствуют сигналы, поля, механические силы, энергия и т.д., функционирует как единая система.

В середине 80-х годов А. Аспект (Парижский университет) проверил эту связь экспериментально, изучая поляризацию пар фотонов, испускаемых одним источником в направлении изолированных детекторов. При сравнении результатов двух серий измерений между ними обнаружилась согласованность. С точки зрения известного физика Д. Бома, эксперименты А. Аспекта подтвердили теорему Белла и поддержали позиции нелокальных скрытых переменных, существование которых предположил А. Эйнштейн. В трактовке квантовой механики Д. Бомом нет неопределенности координат частицы и ее импульса.

Учеными было высказано предположение, что связь осуществляется через передачу информации, носителями которой выступают особые поля.

1 См.: Уилсон Р.А. Указ. соч. С. 181.


4.2.2. Волновая генетика

Открытия, сделанные в квантовой механике, оказали плодотворное воздействие не только на развитие физики, но и на другие области естествознания, прежде всего на биологию, в рамках которой была разработана концепция волновой, или квантовой, генетики.

Когда в 1962 г. Дж. Уотсон, А. Уилсон и Ф. Крик получили Нобелевскую премию за открытие двойной спирали ДНК, несущей наследственную информацию, то генетикам показалось, что основные проблемы передачи генетической информации близки к разрешению. Вся информация записана в генах, совокупность которых в клеточных хромосомах определяет программу развития организма. Ставилась задача расшифровки генетического кода, под которым понималась вся последовательность нуклеотидов в ДНК.

Однако действительность не оправдала ожиданий ученых. После открытия структуры ДНК и детального рассмотрения участия этой молекулы в генетических процессах основная проблема феномена жизни — механизмы ее воспроизведения — осталась, по сути, нераскрытой. Расшифровка генетического кода дала возможность объяснить синтез белков. Классические генетики исходили из того, что генетические молекулы, ДНК, имеют вещественную природу и работают как вещество, представляя собой вещественную матрицу, на которую записан вещественный генетический код. В соответствии с ним нарабатывается плотский, вещественный и материальный организм. Но вопрос о том, каким образом в хромосомах кодируется пространственно-временная структура организма, на основе знания последовательности нуклеотидов решить нельзя. Советскими учеными А.А. Любищевым и А.Г. Гурвичем еще в 20—30-е годы была высказана мысль о том, что рассмотрение генов как чисто вещественных структур явно недостаточно для теоретического описания феномена жизни.

А.А. Любищев в своем труде «О природе наследственных факторов», изданном в 1925 г., писал о том, что гены не являются ни кусками хромосомы, ни молекулами автокаталитических ферментов, ни радикалами, ни физической структурой. Он считал, что нужно признать ген как потенциальную субстанцию. Лучшему пониманию идей А.А. Любищева способствует аналогия генетической молекулы с нотной записью. Нотная запись сама по себе вещественна и представляет собой значки на бумаге, но реали-


зуются эти значки не в вещественном виде, а в звуках, которые являются акустическими волнами.

Развивая эти идеи, А.Г. Гурвич утверждал, что в генетике «необходимо ввести понятие биологического поля, свойства которого формально заимствованы из физических представлений»1. Главная идея А.Г. Гурвича заключалась в том, что развитие эмбриона происходит по заранее установленной программе и принимает те формы, которые уже имеются в его поле. Он первый объяснил поведение компонентов развивающегося организма как целого на основе полевых представлений. Именно в поле содержатся формы, принимаемые эмбрионом в процессе развития. Виртуальную форму, определяющую результат процесса развития в любой его момент, Гурвич назвал динамически преформированной формой и тем самым ввел в первоначальную формулировку поля элемент телеологии. Разработав теорию клеточного поля, он распространил идею поля как принципа, регулирующего и координирующего эмбриональный процесс, также и на функционирование организмов. Обосновав общую идею поля, Гурвич сформулировал ее как универсальный принцип биологии. Им было открыто биофотонное излучение клетки.

Идеи русских биологов А.А. Любищева и А.Г. Гурвича являются гигантским интеллектуальным достижением, опередившим свое время. Суть их мыслей заключена в триаде:

• Гены дуалистичны — они вещество и поле одновременно.

• Полевые элементы хромосом размечают пространство — время организма — и тем самым управляют развитием биосистем.

• Гены обладают эстетически-образной и речевой регулятор-ными функциями.

Эти идеи оставались недооцененными вплоть до появления работ В.П. Казначеева в 60-е годы XX в., в которых экспериментально были подтверждены предвидения ученых о наличии полевых форм передачи информации в живых организмах. Научное направление в биологии, представленное школой В.П. Казначеева, сформировалось как результат многочисленных фундаментальных исследований по так называемому зеркальному цитопатическо-му эффекту, выражавшемуся в том, что живые клетки, разделенные кварцевым стеклом, не пропускающим ни единой молекулы вещества, тем не менее обмениваются информацией. После работ

Гурвич А.Г. Теория биологического поля. — М., 1944. — С. 28.


В.П. Казначеева существование волнового знакового канала между клетками биосистем уже не вызывало сомнения.

Одновременно с экспериментами В.П. Казначеева китайский исследователь Цзян Каньчжен провел серию супергенетических экспериментов, которые перекликались с предвидением А.Л. Любищева и А.Г. Гурвича. Отличие работ Цзян Каньчжена в том, что он проводил эксперименты не на клеточном уровне, а на уровне организма. Он исходил из того, что ДНК — генетический материал — существует в двух формах: пассивной (в виде ДНК) и активной (в виде электромагнитного поля). Первая форма сохраняет генетический код и обеспечивает стабильность организма, а вторая в состоянии его изменить путем воздействия на него биоэлектрическими сигналами. Китайский ученый сконструировал аппаратуру, которая была способна считывать, передавать на расстояние и вводить волновые супергенетические сигналы с биосистемы-донора в организм-акцептор. В результате он вывел немыслимые гибриды, «запрещенные» официальной генетикой, которая оперирует понятиями только вещественных генов. Так появились на свет животные и растительные химеры: куро-утки; кукуруза, из початков которой росли пшеничные колосья, и т.д.

Выдающийся экспериментатор Цзян Каньчжен интуитивно понимал некоторые стороны фактически созданной им экспериментальной волновой генетики и считал, что носителями полевой геноинформации являются сверхвысокочастотные электромагнитные излучения, используемые в его аппаратуре, однако теоретического обоснования он дать не смог.

После экспериментальных работ В.П. Казначеева и Цзян Каньчжена, которые не могли быть объяснены в терминах традиционной генетики, возникла настоятельная необходимость в теоретическом развитии модели волнового генома, в физико-математическом и теоретико-биологическом осмыслении работы хромосомы ДНК в полевом и вещественном измерении.

Первые попытки решить эту проблему предприняли российские ученые П.П. Гаряев, А.А. Березин и А.А. Васильев, которыми были поставлены следующие задачи:

• показать возможность дуалистической трактовки работы генома клетки на уровнях вещества и поля в рамках физико-математических моделей;

• показать возможность обычных и «аномальных» режимов работы генома клетки с использованием фантомно-волновых образно-знаковых матриц;


• найти экспериментальные доказательства правильности пред
лагаемой теории.

В рамках теории, разработанной ими, получившей название волновой генетики, было выдвинуто, обосновано и экспериментально подтверждено несколько основных положений, которые значительно расширили понимание феномена жизни и процессов, происходящих в живой материи.

• Гены — не только вещественные структуры, но и волновые
матрицы, по которым, как по шаблонам, строится организм.

Взаимная передача информации между клетками, помогающая формироваться организму как целостной системе и корректировать слаженную работу всех систем организма, происходит не только химическим путем — синтезом разнообразных ферментов и других «сигнальных» веществ. П.П. Гаряев предположил, а затем экспериментально доказал, что клетки, их хромосомы, ДНК, белки передают информацию с помощью физических полей — электромагнитными и акустическими волнами и трехмерными голограммами, читаемыми лазерным хромосомным светом и излучающими этот свет, который трансформируется в радиоволны и передает наследственную информацию в пространстве организма. Геном высших организмов рассматривается как биоголографический компьютер, формирующий пространственно-временную структуру биосистем. В качестве носителей полевых матриц, по которым строится организм, выступают волновые фронты, задаваемые геноголограммами, и так называемые солитоны на ДНК — особый вид акустических и электромагнитных полей, продуцируемых генетическим аппаратом самого организма и способных к посредническим функциям по обмену стратегической регуляторной информацией между клетками, тканями и органами биосистемы.

В волновой генетике были подтверждены идеи Гурвича — Любищева — Казначеева — Цзян Каньчжена о полевом уровне гено-информации. Иными словами, дуализм совмещающего единства «волна — частица» или «вещество — поле», принятый в квантовой электродинамике, оказался применимым и в биологии, что и предсказывали в свое время АГ. Гурвич и АА. Любищев. Ген-вещество и ген-поле не исключают друг друга, но взаимно дополняют.

Живая материя состоит из неживых атомов и элементарных частиц, которые совмещают в себе фундаментальные свойства волны и частицы, но эти же свойства используются биосистемами в качестве основы для волнового энергоинформационного обмена. Иначе говоря, генетические молекулы излучают информационно-энерге-


тическое поле, в котором закодирован весь организм, его физическое тело и душа.

Гены — это не только то, что составляет так называемый генети
ческий код, но и вся остальная, большая часть ДНК, которая раньше
считалась бессмысленной.

Но именно эта большая часть хромосом анализируется в рамках волновой генетики как главная «интеллектуальная» структура всех клеток организма: «Некодирующие регионы ДНК — это не просто junk (мусор), а структуры, предназначенные для каких-то целей с неясным пока назначением... некодирующие после-довательности ДНК (а это 95—99% генома) являются стратегическим информационным содержанием хромосом... Эволюция биосистем создала генетические тексты и геном — биокомпьютер — биокомпьютер как квазиразумный «субъект», на своем уровне «читающий и понимающий» эти «тексты»1. Этот компонент генома, который получил название супергено-континуум, т.е. сверхген, обеспечивает развитие и жизнь человека, животных, растений, а также программирует естественное умирание. Между генами и супергенами нет резкой и непреодолимой границы, они действуют как единое целое. Гены дают материальные «реплики» в виде РНК и белков, а супергены преобразуют внутренние и внешние поля, формируя из них волновые структуры, в которых кодируется информация. Генетическая общность людей, животных, растений, простейших состоит в том, что на уровне белков эти варианты практически не отличаются или слабо отличаются у всех организмов и кодируются генами, составляющими всего несколько процентов общей длины хромосомы. Но они отличаются на уровне «мусорной части» хромосом, составляющей почти всю их длину.

Собственной информации хромосом недостаточно для развития
организма. Хромосомы по некоторому измерению обращены в физиче
ский вакуум, дающий главную часть информации для развития эм
бриона. Генетический аппарат способен сам и с помощью вакуума
генерировать командные волновые структуры типа голограмм, обеспе
чивающих развитие организма.

Значительными для более глубокого понимания жизни как кос-мо-планетарного явления стали экспериментальные данные, полу-

Гаряев П.П., Тертышный Г.Г., Леонова ЕЖ, Мологин А.В. Волновые внекомпьютерные функции ДНК // Сознание и физическая реальность. — Т. 5. — 2001. — №6. — С. 31.


ченные П.П. Гаряевым, которые доказали недостаточность генома клетки для полноценного воспроизведения программы развития организма в условиях биополевой информационной изоляции. Эксперимент состоял в том, что было построено две камеры, в каждой из которых созданы все природные условия для развития головастиков из лягушачьей икры — необходимый состав воздуха и воды, температура, режим освещения, прудовой ил и т.д. Различия заключались лишь в том, что одна камера была сделана из перма-лоя — материала, не пропускающего электромагнитные волны, а вторая — из обычного металла, который для волн не помеха. В каждую камеру было помещено равное количество оплодотворенной лягушачьей икры. В результате эксперимента в первой камере появились сплошь уроды, которые через несколько дней погибли, во второй камере в положенный срок вылупились и нормально развились головастики, превратившиеся потом в лягушек.

Ясно, что для нормального развития головастиков в первой камере им не хватало какого-то фактора, несущего недостающую часть наследственной информации, без которой организм не может быть «собран» в полном виде. А так как стенки первой камеры отсекали головастиков только от излучений, которые свободно пронизывали вторую камеру, то естественно предположить, что фильтрация или искажение естественного информационного фона вызывает уродство и гибель эмбрионов. Это означает, что коммуникации генетических структур с внешним информационным полем, безусловно, необходимы для гармоничного развития организма. Внешние (экзобиологические) полевые сигналы несут дополнительную, а может быть, и главную информацию в гено-континуум Земли.

Тексты ДНК и голограммы хромосомного континуума могут читаться в многомерном пространственно-временном и семантическом вариантах. Существуют волновые языки генома клеток, сходные с человеческими.

Особого внимания заслуживает в волновой генетике обоснование единства фрактальной (повторяющей самою себя в разных масштабах) структуры последовательностей ДНК и человеческой речи. То, что четыре буквы генетического алфавита (аденин, гуанин, цитозин, тимин) в ДНК-текстах образуют фрактальные структуры, было обнаружено еще в 1990 г. и не вызвало особой реакции. Однако открытие геноподобных фрактальных структур в человеческой речи явилось неожиданностью и для генетиков и для


112

лингвистов. Стало очевидно, что принятое и уже привычное сравнение ДНК с текстами, носившее метафорический характер после открытия единства фрактальной структуры и человеческой речи, вполне оправдано.

Совместно с сотрудниками Математического института РАН группа П.П. Гаряева разработала теорию фрактального представления естественных (человеческих) и генетических языков. Практическая проверка этой теории в области «речевых» характеристик ДНК показала стратегически верную ориентацию исследований.

Так же, как и в экспериментах Цзян Каньчжена, группой П.П. Гаряева был получен эффект трансляции и введения волновой супергенетической информации от донора к акцептору. Были созданы устройства — генераторы солитонных полей, в которые можно было вводить речевые алгоритмы, например, на русском или английском языках. Такие речевые структуры превращались в солитонные модулированные поля — аналоги тех, которыми оперируют клетки в процессе волновых коммуникаций. Организм и его генетический аппарат «узнает» такие «волновые фразы» как свои собственные и поступает в соответствии с введенными человеком извне речевыми рекомендациями. Удалось, например, создавая определенные речевые, вербальные алгоритмы, восстановить радиационно поврежденные семена пшеницы и ячменя. Причем семена растений «понимали» эту речь вне зависимости от того, на каком языке она произносилась — русском, немецком или английском. Эксперименты были проведены на десятках тысяч клеток.

Для проверки эффективности стимулирующих рост волновых программ в контрольных экспериментах в геном растений через генераторы вводили бессмысленные речевые псевдокоды, которые никак не влияли на обмен веществ растений, в то время как смысловое вхождение в биополевые семантические пласты генома растений давало эффект резкого, но кратковременного ускорения роста.

Распознавание геномами растений человеческой речи (вне зависимости от языка) полностью соответствует положению лингвистической генетики о существовании праязыка генома биосистем на ранних этапах их эволюции, общего для всех организмов и сохранившегося в общей структуре генофонда Земли. Здесь видно соответствие идеям классика структурной лингвистики Н. Хомского, считавшего, что все естественные языки


имеют глубинную врожденную универсальную грамматику, инвариантную для всех людей и, вероятно, для их собственных супергенетических структур.

4.2.3. Атомистическая концепция строения материи

Атомистическая гипотеза строения материи, выдвинутая в античности Демокритом, была возрождена в XVIII в. химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А.А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. Изучение радиоактивности было продолжено французскими физиками супругами Пьером и Марией Кюри, открывшими новые радиоактивные элементы полоний и радий.

История исследования строения атома началась в 1897 г. благодаря открытию Дж. Томсоном электрона — отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы — протона.

Исходя из огромной, по сравнению с электроном, массы положительно заряженной частицы, английский физик У. Томсон (лорд Кельвин) предложил в 1902 г. первую модель атома — положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг». Эта идея была развита Дж. Томсоном. Модель атома Дж. Томсона, над которой он работал почти 15 лет, не устояла перед опытной проверкой.

В 1908 г. Э. Марсден и X. Гейгер, сотрудники Э. Резерфорда, провели опыты по прохождению альфа-частиц через тонкие пластинки из золота и других металлов и обнаружили, что почти все они проходят через пластинку, будто нет препятствия, и только


114

1/10 000 из них испытывает сильное отклонение. По модели Дж. Томсона это объяснить не удавалось, но Э. Резерфорд нашел выход. Он обратил внимание на то, что большая часть частиц отклоняется на малый угол, а малая — до 150°. Э. Резерфорд пришел к выводу, что они ударяются о какое-то препятствие, это препятствие представляет собой ядро атома — положительно заряженную микрочастицу, размер которой (10-12 см) очень мал по сравнению с размерами атома (10-8 см), но в ней почти полностью сосредоточена масса атома.

Модель атома, предложенная Э. Резерфордом в 1911 г., напоминала Солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны — отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.

Неразрешимое противоречие этой модели заключалось в том, что электроны, чтобы не потерять устойчивость, должны двигаться вокруг ядра. В то же время они, согласно законам электродинамики, обязательно должны излучать электромагнитную энергию. Но в таком случае электроны очень быстро потеряли бы всю свою энергию и упали на ядро.

Следующее противоречие связано с тем, что спектр излучения электрона должен быть непрерывным, так как электрон, приближаясь к ядру, менял бы свою частоту. Опыт же показывает, что атомы излучают свет только определенных частот. Именно поэтому атомные спектры называют линейчатыми. Другими словами, планетарная модель атома Резерфорда оказалась несовместимой с электродинамикой Дж. К. Максвелла.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стацио-


нарных орбит) электронов, двигаясь по которым, электрон, может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

Постулаты Бора объясняют устойчивость атомов: находящиеся в стационарных состояниях электроны без внешней на то причины не излучают электромагнитной энергии. Становится понятным, почему атомы химических элементов не испускают излучения, если их состояние не изменяется. Объясняются и линейчатые спектры атомов: каждой линии спектра соответствует переход электрона из одного состояния в другое.

Теория атома Н. Бора позволяла дать точное описание атома водорода, состоящего из одного протона и одного электрона, достаточно хорошо согласующееся с экспериментальными данными. Дальнейшее же распространение теории на многоэлектронные атомы и молекулы столкнулось с непреодолимыми трудностями. Чем подробнее теоретики пытались описать движение электронов в атоме, определить их орбиты, тем большим было расхождение теоретических результатов с экспериментальными данными. Как стало ясно в ходе развития квантовой теории, эти расхождения были связаны главным образом с волновыми свойствами электрона. Длина волны движущегося в атоме электрона равна примерно 10-8 см, т.е. она того же порядка, что и размер атома. Движение частицы, принадлежащей какой-либо системе, можно с достаточной степенью точности описывать как механическое движение материальной точки по определенной орбите (траектории) только в том случае, если длина волны частицы пренебрежимо мала по сравнению с размерами системы. Другими словами, следует учитывать, что электрон не точка и не твердый шарик, он обладает внутренней структурой, которая может изменяться в зависимости от его состояния. При этом детали внутренней структуры электрона неизвестны.

Следовательно, точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует. Вследствие своей волновой природы электроны и их заряды как бы размазаны по атому, однако не равномерно, а таким образом, что в некоторых точках усредненная по времени электронная плотность заряда больше, а в других — меньше.

Описание распределения плотности электронного заряда было дано в квантовой механике: плотность электронного заряда в оп-


116

ределенных точках дает максимум. Кривая, связывающая точки максимальной плотности, формально называется орбитой электрона. Траектории, вычисленные в теории Н. Бора для одноэлек-тронного атома водорода, совпали с кривыми максимальной средней плотности заряда, что и обусловило согласованность с экспериментальными данными.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений. Введенные Бором постулаты ясно показали, что классическая физика не в состоянии объяснить даже самые простые опыты, связанные со структурой атома. Постулаты, чужеродные классической физике, нарушили ее цельность, но позволили объяснить лишь небольшой круг экспериментальных данных.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

4.2.4. Элементарные частицы и кварковая модель атома

Дальнейшее развитие идей атомизма было связано с исследованием элементарных частиц. Частицы, входящие в состав прежде «неделимого» атома, называют элементарными. К ним относят и те частицы, которые получают в условиях эксперимента на мощных ускорителях. В настоящее время открыто более 350 микрочастиц.

Термин «элементарная частица» первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина «элементарный» применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но тем не менее исторически сложившееся название продолжает существовать.


Основными характеристиками элементарных частиц являются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частиц определяют по отношению к массе покоя электрона. Существуют элементарные частицы, не имеющие массы покоя, — фотоны. Остальные частицы по этому признаку делятся на: лептоны — легкие частицы (электрон и нейтрино); мезоны — средние частицы с массой в пределах от одной до тысячи масс электрона; барионы — тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. В 1967 г. американский физик М. Гелл-Манн высказал гипотезу о существовании кварков — частиц с дробным электрическим зарядом.

По времени жизни частицы делятся на стабшьные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильные частицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны, они существуют около 10-10 — 10-24, после чего распадаются.

Помимо заряда, массы и времени жизни, элементарные частицы описываются также понятиями, не имеющими аналогов в классической физике: понятием «спин», или собственный момент количества движения микрочастицы, и понятием «квантовые числа», выражающим состояние элементарных частиц.

Согласно современным представлениям, все элементарные частицы делятся на два класса: фермионы (названные в честь Э. Ферми) и бозоны (названные в честь Ш. Бозе).

К фермионам относятся кварки и лептоны, к бозонам — кванты полей (фотоны, векторные бозоны, глюоны, гравитино и гравитоны). Эти частицы считаются истинно элементарными, т.е. далее неразложимыми. Остальные частицы классифицируются как условно элементарные, т.е. составные частицы, образованные из кварков и соответствующих квантов полей. Фермионы составляют вещество, бозоны переносят взаимодействие.

Элементарные частицы участвуют во всех видах известных взаимодействий. Различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное.


118

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение их составных частей. Оно действует на расстоянии порядка 10-13 см. При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются материальные системы с высокой энергией связи — атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон — квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы — в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно простирается на расстояние порядка 10-15— 10-22см и связано главным образом с распадом частиц, например с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие — самое слабое, не учитываемое в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10-13 см оно дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (порядка 10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Ядерные реакции, связанные с сильными взаимодействиями, происходят в течение 10-24—10-23 с. Это приблизительно тот кратчайший интервал времени, за который частица, ускоренная до высоких энергий, до скорости, близкой скорости света, проходит через элементарную частицу размером порядка 10-13см. Изменения, обусловленные электромаг-


нитными взаимодействиями, осуществляются в течение 10-19—10-21 с, а слабыми (например, распад элементарных частиц) — в основном 10-10 с.

По времени различных превращений можно судить о силе связанных с ними взаимодействий.

Все четыре взаимодействия необходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной.

Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эволюционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия — суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

При энергии в 100 ГэВ (100 млрд электрон-вольт) объединяются электромагнитное и слабое взаимодействия. Такая температура соответствует температуре Вселенной через 10-10с после Большого взрыва. При энергии 1015 ГэВ к ним присоединяется сильное взаимодействие, а при энергии 1019 ГэВ происходит объединение всех четырех взаимодействий.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

Достижения в области исследования элементарных частиц способствовали дальнейшему развитию концепции атомизма. В настоящее время считают, что среди множества элементарных


частиц можно выделить 12 фундаментальных частиц и столько же античастиц1. Шесть частиц — это кварки с экзотическими названиями: «верхний», «нижний», «очарованный», «странный», «истинный», «прелестный». Остальные шесть — лептоны: электрон, мюон, тау-частица и соответствующие им нейтрино (электронное, мюонное, тау-нейтрино).

Эти 12 частиц группируют в три поколения, каждое из которых состоит из четырех членов.

В первом поколении — «верхний» и «нижний» кварки, электрон и электронное нейтрино.

Во втором поколении — «очарованный» и «странный» кварки, мюон и мюонное нейтрино.

В третьем поколении — «истинный» и «прелестный» кварки и тау-частицы со своим нейтрино.

Date: 2015-09-19; view: 352; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию