Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Желчеобразующая функция печени. Состав и функции желчи. Гепатоэнтеральная циркуляция желчных кислот. Биосинтез желчных кислот и их роль





Желчеобразование и желчевыделение – одна из сложных, интегративных метаболических функций печени. Желчь представляет собой одновременно и экскреторный, и секреторный продукт печени, в состав которого входят вещества, являющиеся одновременно и балластными, и даже токсичными для организма метаболитами, подлежащими удалению из организма, и веществами, активно участвующими в ряде физиологических процессов пищеварения в кишечнике, которые способствуют расщеплению и всасыванию пищевых веществ.

Вещества, входящие в состав желчи, частично синтезируются в печени, что требует значительных энергетических тракт (секреция). Желчь состоит из желчных кислот, холестерина, фосфолиппдов, билирубина, белков, минеральных ионов, воды. Таким образом, в желчеооразующей функции печени объединено участие печени в пигментном обмене, липидиом, белковом, минеральном обмене, клиренсе крови от излишних метаболитов, в процессах кишечного пищеварения.

Функции желчи: эмульгирование жиров, экскреторная, пищеварительная и др.

Кише́чно-печёночная циркуля́ция же́лчных кисло́т — циклическое обращение желчных кислот в пищеварительном тракте, при котором они синтезируются печенью, выводятся в составе желчи в двенадцатиперстную кишку, реабсорбируются в кишечнике, транспортируются кровотоком к печени и повторно используются при секреции желчи.

Желчные кислоты всасываются в кишечнике кровь, через воротную вену с кровью вновь попадают в печень и опять секретируются в составе желчи, поэтому 85—90% всего количества желчных кислот, содержащихся в желчи, являются желчными кислотами, уже ранее «проходившими» через кишечник. Количество оборотов желчных кислот печень—кишечник—печень у человека примерно 5-6 в сутки (до 10). Объём оборачиваемых желчных кислот — 2,8—3,5 г.

Первичные желчные кислоты (холевая и хенодезоксихолевая) синтезируются в гепатоцитах печени из холестерина. Желчные кислоты образуются в митохондриях гепатоцитов и вне их из холестерина с участием АТФ. Гидроксилирование при образовании кислот осуществляется в эндоплазматическом ретикулуме гепатоцита. Среди выделяемой в кишку желчи вновь синтезированных желчных кислот не более 10 %, остальные 90 % — это продукт кишечно-печёночной циркуляции желчных кислот из кишки в кровь и в печень.

17. Обезвреживающая функция печени. Обезвреживание продуктов гниения белков в печени: этапы, типы химических реакций. Токсическое действие продуктов гниения белков.

Гние́ние (аммонификация) — процесс разложения азотсодержащих органических соединений (белков, аминокислот), в результате их ферментативного гидролиза под действием аммонифицирующих микроорганизмов с образованием токсичных для человека конечных продуктов — аммиака, сероводорода, а также первичных и вторичных аминов при неполной минерализации продуктов разложения:

  • Трупных ядов (например путресцин и кадаверин)
  • Ароматические соединения (например скатол, индол- образуются в результате дезаминирования и декарбоксилирования аминокислоты триптофана)
  • Гниение серосодержащих аминокислот (цистеина, цистина и метионина) приводит к выделению сероводорода, меркаптанов, диметилсульфоксида

Первой стадией разложения белков является их гидролиз как микробными протеазами, так и протеазами клеток погибшего организма, высвобождаемыми из лизосом в результате смерти клеток (аутолиз). Протеолиз происходит в несколько стадий- в начале белки расщепляются до всё ещё крупных полипептидов, затем образовавшиеся полипептиды расщепляются до олигопептидов, которые в свою очередь расщепляются до дипептидов и свободных аминокислот.[1] Образовавшиеся свободные аминокислоты затем подвергаются ряду превращений, приводящих к выделению характерных для гниения продуктов. Первыми стадиями является дезаминирование аминокислот, в результате которого аминогруппа аминокислоты отщепляется и высвобождается свободный ион аммония и декарбоксилирование, в результате которого карбоксильная группа отщепляется с высвобождением двуокиси углерода (реакция декарбоксилирования чаще всего происходит в условиях пониженного pH). В результате декарбоксилирования высвобождаются также первичные амины:

  • H2N-(CH2)4-CHNH2-COOH (лизин) → H2N-(CH2)4-CH2NH2 (кадаверин) + CO2

Выделяют так называемое окислительное дезаминирование (наиболее распространённый вид дезаминирования, в результате которого NAD(P) восстанавливается до NAD(P)H2) и гидролитическое дезаминирование, при котором аминогруппа аминокислоты заменяется на гидроксильную.

Также некоторые аминокислоты трансаминируются путём перемещения аминогруппы аминокислоты на 2-оксикислоту (в результате этого процесса также происходит дезаминирование аминокислот, кроме этого синтезируются те аминокислоты, которые бактерии не могут синтезировать путём аминирования ионами аммония).

Образовавшиеся в результате дезаминирования и декарбоксилирования продукты могут как окисляться микроорганизмами с целью получения энергии в виде АТФ, так и участвовать в реакциях промежуточного обмена.

18. Экзогенные и эндогенные субстраты детоксикации. Реакции гидроксилирования (микросомальная система окисления) и конъюгации. Детоксикация ядовитых метаболитов и чужеродных соединений (ксенобиотиков) протекает в гепатоцитах в две стадии. Реакции первой стадии катализируются монооксигеназной системой, компоненты которой встроены в мембраны эндоплазматического ретикулума. Реакции окисления, восстановления или гидролиза являются первой стадией в системе выведения из организма гидрофобных молекул. Они превращают вещества в полярные водорастворимые метаболиты.

Основной фермент гемопротеид цитохромы Р-450. К настоящему времени выявлено множество изоформ этого фермента и отнесено, в зависимости от их свойств и выполняемых функций, к нескольким семействам. У млекопитающих идентифицировано 13 подсемейств цх Р-450, условно считается, что ферменты семейства I-IV участвуют в биотрансформации ксенобиотиков, остальные метаболизируют эндогенные соединения (стероидные гормоны, простатагландины, жирные кислоты и др.).

Важным свойством цх Р-450 является способность к индукции под действием экзогенных субстратов, что легло в основу классификации изоформ в зависимости от индуцируемости тем или веществом определенной химической структуры.

На первой стадии биотрансформации происходит образование или высвобождение гидрокси-, карбоксильных, тиоловых и аминогрупп, которые являются гидрофильными, и молекула может подвергаться дальнейшему превращению и выведению из организма. В качестве кофермента используется НАДФН. Кроме цх Р-450, в первой стадии биотрансформации принимают участие цх b5 и цитохромредуктаза.

Многие лекарственные вещества, попадая в организм, превращаются на первой стадии биотрансформации в активные формы и оказывают необходимый лечебный эффект. Но часто ряд ксенобиотиков не детоксицируется, а наоборот токсифицируется с участием монооксигеназной системы и становится более реакционноспособным.

Продукты метаболизма чужеродных веществ, образовавшихся на первой стадии биотрансформации, подвергаются дальнейшей детоксикации с помощью ряда реакций второй стадии. Образующиеся при этом соединения менее полярны и в связи с этим легко удаляются из клеток. Преобладающим является процесс конъюгации, катализируемый глутатион-S-трансферазой, сульфотрансферазой и UDP-глюкуронилтрансферазой. Конъюгацию с глутатионом, приводящую к образованию меркаптуровых кислот, принято рассматривать в качестве основного механизма детоксикации.

Глутатион (ведущий компонент редокс-буфера клетки) представляет собой соединение, содержащее реактивную тиоловую группу. Большая его часть находится в восстановленной форме (GSH) и играет центральную роль в инактивации токсических и реактивных продуктов. Восстановление окисленного глутатиона осуществляет фермент - глутатионредуктаза, используя как кофермент НАДФН. Коньюгаты с глутатионом, серной и глюкуроновой кислотами выводятся из организма преимущественно с мочой.

Date: 2015-09-18; view: 1607; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию