Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Критическая скорость, критическое сечение и критические параметры





Понятие критической скорости удобно ввести, рассматривая процесс истечения газа из резервуара через сопло в атмосферу, хотя эта величина применяется в самых разнообразных задачах, не обязательно связанных с процессом истечения. На рис.14 внизу изображены кривые изменения скорости потока, температуры и местной скорости звука по длине сопла, через которое движется газ. Это течение является энергоизолированным, поэтому связь между скоростью и температурой выражается с помощью уравнения энергии в форме (2.19)[3]. По мере нарастания скорости по длине сопла, температура, как это следует из уравнения энергии (2.19), а следовательно, и скорость звука (2.37) уменьшаются. Таким образом; в различных сечениях одного и того же потока скорость звука получается разной. В начале сопла скорость потока ниже скорости звука, в конце — превышает ее. Где-то в средней части сопла существует сечение, в котором скорость потока равна местной скорости звука. Это сечение называется критическим, а параметры потока в нем — критическими параметрами. Ниже будет показано, что если газ движется без трения и без обмена энергией с внешней средой, то критическое сечение совпадает с самым узким местом канала — горлом сопла.

 

Можно так сформулировать понятие критической скорости: критической скоростью называется такая скорость течения газа, которая равна местной скорости звука. Можно дать и другую формулировку, принимая во внимание то обстоятельство, что в точке пересечения кривых на рис.14 проходит как кривая скорости потока, так и кривая скорости звука, а именно: критической скоростью звука называется такое значение местной скорости звука, которое равно скорости потока газа в данном месте. Как видим, в обоих случаях численное значение получится одним и тем же, поэтому безразлично, как именовать эту величину — критической скоростью или критической скоростью звука — и как обозначать ее: wкр или акр. Более распространено название «критическая скорость» и обозначение акр.

Рассчитать критическую скорость можно по формуле

 

(2.42)

где Ткр— температура газа в критическом сечении. Последняя легко определяется с помощью уравнения энергии (2.19), левая часть которого записывается для сечения внутри резервуара (см. рис. 14), где w=0, Т=Т*, а правая часть — для критического сечения, в котором wкр=акр, Т=Ткр, а именно:

Заменив здесь и акр по формуле (2.42), получим после небольших преобразований

(2.43)

 

Эта величина называется критическим отношением температур. Попутно запишем формулы для критического отношения давлений и для критического отношения плотностей. Так как процесс течения газа через сопло идеальный, то связь между давлениями, плотностями и температурами устанавливается уравнением изоэнтропы (2.33). Тогда

(2.44)

(2.45)

 

Для воздуха эти соотношения имеют следующие значения:

 

 

Определив из соотношения (2.43) температуру Ткр и подставив ее значение в формулу (2.42), приходим к наиболее удобной формуле для расчета критической скорости

(2.46)

 

Для воздуха .

 

Следовательно, м/сек. (2.47)

& [1] с.20…24. [3]с.40…42. [4] с.56..58. [5]с.415…418 ; с.421…424.

&[6]с.135…139. [7] с.51…56. [8]с.193.

31. Безразмерные скорости: относительная и приведенная скорости, число Маха

 

Обычно скорость движения измеряется в метрах в секунду, километрах в час или каких-нибудь других единицах, имеющих размерность длина/время. Если же за единицу измерения скорости принять какую-либо из характерных скоростей, например скорость звука, то результат измерения будет выражаться безразмерным числом.

Наиболее распространены три безразмерные скорости: число М, приведенная скорость λ и приведенная (относительная) скорость Λ. Приведенные скорости иначе называют коэффициентами скорости.

Числом М называется отношение скорости потока к местной скорости звука

 

M = w / a. (2.50)

 

Впервые эта величина была использована в трудах профессора Петербургской артиллерийской академии Н.В.Маиевского (1868), затем этим отношением пользовался австрийский физик Э.Мах (1887). В связи с этим в советской технической литературе отношение _ часто называют числом Маиевского, в немецкой — числом Маха. Иногда в английской литературе эту величину называют числом Бэрстоу.

Приведенной скоростью, или коэффициентом скорости λ называется отношение скорости потока к критической скорости

λ = w / aкр. (2.51)

 

Числом Λ или относительной скоростью называется отношение скорости потока к максимальной скорости течения газа

Λ = w / wmax . (2.52)

 

Заметим, что величиной w2/w2max=Λ2 пользовался академик С.А. Чаплыгин еще в первых работах по газовой динамике. Поэтому ее иногда называют числом Чаплыгина.

Численное значение безразмерных скоростей может изменяться в следующем диапазоне:

 

число М от 0 до

число λ от 0 до

число Λ от 0 до 1,

 

так как скорость потока может изменяться от 0 до wmах, а местная скорость звука в том сечении, где w=wmax, равна нулю (потому что температура равна нулю).

Связь между приведенными скоростями λ и Λ устанавливается следующим путем:

следовательно,

(2.53)

Для установления зависимости между приведенной скоростью и числом Мвозьмем отношение их квадратов

откуда

(2.54)

или

(2.55)

 

График зависимости приведенной скорости от числа М изображен на рис.15. Из графика видно, что значения М и λ численно совпадают при М=1 и М=0. Когда М−›∞, то приведенная скорость λ стремится ко вполне определенному пределу

Это значение легко получить, устремив число М к бесконечности. Тогда w стремится к максимальной скорости и λ — к величине wmax/aкр, которая равна (см. формулу (2.48)). Последняя является наибольшей из всех возможных величин λ и называется максимальной приведенной скоростью λмах. Для воздуха (k = 1,4) λmax = 2,449.

 

Числа М, λ и Λ являются критериями подобия для сжимаемой жидкости. Так например, если в двух геометрически подобных каналах числа М на входе будут одинаковы, то отношения скоростей, давлений, температур, плотностей в двух сечениях одного канала будут равны соответствующим отношениям в двух сходственных сечениях другого канала.

 

 

 

Поскольку число М связано с приведенными скоростями λ и Λ однозначными зависимостями, то, вместо того, чтобы устанавливать одинаковые числа М на входе в каналы, можно установить одинаковые числа λ или одинаковые числа Λ. В этом случае подобие потоков также будет соблюдаться.

 

& [1] с.20…24. [3]с.42…47. [4] с.56..60. [5]с.416…418.

&[6]с.135…139. [7] с.49…51. [8]с.193..195.








Date: 2015-09-03; view: 882; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.009 sec.) - Пожаловаться на публикацию