Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Аналогично





Таким образом, у нас имеется таблица производных основных элементарных функций. Тем самым ясно, как вычислять производные элементарных функций, которые получают из основных элементарных путем конечного числа арифметических операций и взятия функции от функции.

 

Производная функции, заданной параметрически

Пусть х и у заданы как функции некоторого параметра t:

. (1)

Каждому значению t соответствуют значения х и у.

 

 
 

 

 


 

 

Если рассматривать эти значения x и y как координаты точки на плоскости xОy, то каждому значению t соответствует определенная точка плоскости. При изменении t от эта точка описывает на плоскости некоторую кривую.

Уравнения (1) называются параметрическими уравне-ниями этой кривой, t называется параметром, а способ задания кривой (1) –параметрическим.

Предположим, что функция имеет обратную, , тогда т.е. у является сложной функцией от х.

По правилу дифференцирования сложной функции

. Но по правилу дифференцирования обратной функции .

 

Эта формула называется формулой дифференцирования функции, заданной параметрически.

Пример:

 








Date: 2015-09-02; view: 46; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.004 sec.) - Пожаловаться на публикацию