Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Вопрос №3: Обратная матрица: определение, теоремы о существовании и единственности обратной матрицы





Рассмотрим квадратную матрицу

 

A = .

 

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А-1, так что В = А-1. Обратная матрица вычисляется по формуле

А-1 = 1/Δ , (4.5)

где Аij - алгебраические дополнения элементов aij.

Теорема. Для существования обратной матрицы необходимо и достаточно, чтобы исходная матрица была невырожденной.

Доказательство:1)Необходимость: так как А*А-1=Е, то

2)Достаточность: зададим матрицу А-1 в следующем виде:

.

Тогда любой элемент произведения , не лежащий на главной диагонали, равен сумме произведений элементов одной строки (или столбца матрицы А на алгебраические дополнения к элементам другого столбца и, следовательно, равен 0 (как определитель с двумя равными столбцами). Элементы, стоящие на главной диагонали, равны Таким образом,

 

Теорема доказана

Вопрос №4:Системы линейных алгебраических уравнений (СЛАУ): скалярная и матричная формы записи. Правило Крамера. Решение и исследование СЛАУ методом Гаусса. Решение матричных уравнений с помощью обратной матрицы.

СЛАУ в матричной форме записывается в виде

AX = B, (1)

где

В скалярной форме записи

Система (1) имеет единственное решение, если

Правило Крамера:

Рассмотрим СЛАУ из n уравнений с n неизвестными (СЛАУ n-го порядка):

Для простоты изложения ограничимся сначала СЛАУ 3-го порядка

 

Определители:

 

 

Справедлива следующая теорема (правило Крамера). Если определитель основной матрицы СЛАУ отличен от нуля,

то эта система имеет единственное решение, которое определяется формулами (формулы Крамера):

Ме́тод Га́усса[1] — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные[2].

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

1.перестановка строк или столбцов;

2.умножение строки на число, отличное от нуля;

3.прибавление к одной строке другие строки.








Date: 2015-09-02; view: 773; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.01 sec.) - Пожаловаться на публикацию