Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Евклидово пространство





- конечномерное векторное пространство с положительно определённым скалярным произведением. Является непосредств. обобщением обычного трёхмерного пространства. В Е. п. существуют декартовы координаты, в к-рых скалярное произведение (ху)векторов х- (x 1 ,..., х ny = (y 1,..., y п)имеет вид (xy)=x 1 y 1 +...+х n у п. В произвольных координатах скалярное произведение по определению удовлетворяет условиям: 1) (хх)/0, (хх) = 0лишь при x =0; 2) (ху) = (ух)*; 3) (a ху) = a(ху); 4) (x { y+ z}) =(xy)+ (xz), где a - любое комплексное число, * означает комплексное сопряжение. В Е. п. имеет место неравенство Коши - Буняковского | |2[(хх)(уу). Число

наз. нормой (или длиной)вектора х, а угол q между векторами х, у находят из ф-лы cosq= (xy)/|x| |у|. Первоначально евклидовыми наз. пространства, в к-рых выполнены аксиомы евклидовой геометрии, осн. понятиями к-рой являются длина векторов и угол между ними. Бесконечномерное Е. п. обычно наз. гильбертовым пространством. Пространство, в к-ром нарушено условие 1) положительности скалярного произведения, наз. псевдоевклидовым пространством. Пространство, в к-ром п четно, а условие 2) заменяется условием (ху) = --(ух), наз. симплектическим пространством. Лит.: Гельфанд И. М., Лекции по линейной алгебре, 4 изд., М., 1971; Дубровин Б. А., Новиков С. П., Фоменко А. Т., Современная геометрия, 2 изд., М., 1986. С. В. Молодцов.

24.Ортогональный базис — базис, составленный из попарно ортогональных векторов.

Ортонормированный базис в 3-мерном евклидовом пространстве

Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.

Последнее удобно записывается при помощи символа Кронекера:

то есть скалярное произведение каждой пары базисных векторов равно нулю, когда они не совпадают (), и равно единице при совпадающем индексе, то есть когда берется скалярное произведение любого базисного вектора с самим собой.

Очень многое записывается в ортогональном базисе гораздо проще, чем в произвольном, поэтому очень часто стараются использовать именно такие базисы, если только это возможно или использование какого-то специального неортогонального базиса не дает особых специальных удобств. Или если не отказываются от него в пользу базиса общего вида из соображений общности.

Ортонормированный базис является самодуальным (дуальный ему базис совпадает с ним самим). Поэтому в нём можно не делать различия между верхними и нижними индексами, и пользоваться, скажем, только нижними (как обычно и принято, если конечно при этом используются только ортонормированные базисы).

Линейная независимость следует из ортогональности, то есть достигается для ортогональной системы векторов автоматически.

Коэффициенты в разложении вектора по ортогональному базису:

можно найти так:

.

Полнота ортонормированной системы векторов эквивалентна равенству Парсеваля: для любого вектора квадрат нормы вектора равен сумме квадратов коэффициентов его разложения по базису:

Аналогичные соотношения имеют место и для бесконечномерного случая (см. ниже).

Date: 2015-08-24; view: 489; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию