Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Задание по курсовому проектированию





Аннотация

Задание по курсовому проектированию

Теоретическая часть

Расчетная часть

Тепловая схема и основные параметры

2. Расчет кожухотрубчатого теплообменника

3. Расчет теплообменника "Труба в трубе"

Заключение

 


Аннотация

 

В данной работе приводится расчет двух типов теплообменных аппаратов:

1. расчет кожухотрубчатого теплообменника;

2. расчет теплообменника типа "труба в трубе".

Данные аппараты предназначены для нагрева уксусной кислоты (CH 3 COOH) и охлаждения насыщенного водяного пара. Используемые ГОСТы: ГОСТ 9930-78, ГОСТ 15122-70 и ГОСТ 2120-73. На основе приведенных расчетов производится выбор нормализованного варианта конструкции, который будет удовлетворять заданным техническим требованиям.

 


Задание по курсовому проектированию

 

Рассчитать и спроектировать теплообменник (холодильник, конденсатор) по следующим данным:

1. Тип аппарата – выбрать;

2. Производительность аппарата:

А. По нагреваемой среде: 30 000 кг/ч

а) состав – уксусная кислота, 50 %;

б) начальная температура - 10 С;

в) конечная температура - 70 С;

г) давление - 1,5 атм.

Б. По охлаждаемой среде:

а) состав – насыщенный водяной пар;

б) давление – 6 атм.

Представить:

1. Пояснительную записку: аннотация, задание, введение, выбор типа и конструкции, краткая характеристика и схема аппарата, материальные и тепловые расчеты, определение конструктивных размеров, заключение, список используемой литературы.

2. Графические документы (чертежи общего вида, узлов, деталей).

Пояснительная записка и графические документы должны отвечать требованиям ЕСКД.

 


Теоретическая часть

 

Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущей силой любого процесса теплообмена является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно переходит от более нагретого к менее нагретому телу. Тела, участвующие в теплообмене называются теплоносителями.

Теплопередача – наука о процессах распространения тепла. Законы теплопередачи лежат в основе тепловых процессов – нагревания, охлаждения, конденсации паров, выпаривании и имеют большое значение для проведения многих массообменных, а также химических процессов, протекающих с подводом или отводом тепла.

Различают три способа распространения тепла:

1. Теплопроводность - представляет собой перенос тепла вследствие беспорядочного (теплового) движения микрочастиц непосредственно соприкасающихся друг с другом. Это движение может происходить либо движением самих молекул, либо колебанием атомов (кристаллическая решетка твердых тел), либо диффундированием свободных электронов в металле.

2. Конвекция - это перенос тепла вследствие движения и перемешивания макроскопических объёмов жидкости или газа. Различают естественную или свободную конвекцию, которая обусловлена разностью плотностей в различных точках объема жидкости или газа, возникающие вследствие разности температур, и вынужденную конвекцию, которая возникает при принудительном движении всего объема жидкости или газа (перемешивание).

3.Тепловое излучение – процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тепла.

В реальных условиях тепло передается не каким-либо одним способом, а комбинированным путем.

Перенос тепла от стенки в газообразной или жидкой среде или в обратном направлении называется теплоотдачей.

Различают установившиеся (стационарные) процессы теплообмена для непрерывно действующих аппаратов и неустановившиеся – для периодически действующих аппаратов.

Теплоносители, имеющие более высокую температуру, чем нагреваемая среда и отдающие тепло, называются нагревающими агентами. Теплоносители с более низкой температурой – охлаждающие агенты. Выбор теплоносителя зависит от требуемой температуры нагрева или охлаждения и необходимости её регулирования. Промышленный теплоноситель должен обеспечивать достаточно высокую интенсивность теплообмена при небольших массовых и объемных его расходах. Соответственно он должен обладать малой вязкостью, но высокими плотностью, температурой и теплотой парообразования. Желательно также, чтобы теплоноситель был не горюч, не токсичен, термически стоек, не оказывал разрушающего действия на материал теплообменника и вместе с тем являлся бы достаточно доступным и дешевым веществом.

В зависимости от способа передачи тепла различают две основные группы теплообменников:

1. Поверхностные теплообменники, в которых перенос тепла между средами происходит через разделяющую их поверхность теплообмена – глухую стенку.

2. Теплообменники смешения, в которых тепло передаётся от одной среды к другой при непосредственном соприкосновении.

Поверхностные теплообменники имеют различное конструктивное оформление. Ниже рассмотрим некоторые наиболее часто встречающиеся конструкции теплообменников.

Кожухотрубчатые теплообменники - являются наиболее распространенными аппаратами вследствие компактного размещения большой теплопередающей поверхности в единице объема аппарата. Поверхность теплообмена в нем образуется пучком параллельно расположенных трубок, концы которых закреплены в двух трубных досках. Трубки заключены в цилиндрический кожух, приваренный к трубным доскам или соединенный с ними фланцами. К трубным решеткам крепятся на болтах распределительные головки (днища), что позволяет легко снять их и произвести чистку трубок или в случае необходимости заменить новыми. Для подачи и отвода теплообменивающихся сред в аппарате имеются штуцеры. Для равномерного распределения трубки размещаются в решетках обычно по периметрам правильных шестиугольников, реже – по вершинам квадратов.

Выше указывались преимущества проведения процесса теплообмена по принципу противотока. При этом охлаждаемую среду можно направить сверху вниз, а нагреваемую навстречу ей, или наоборот. Правильным является первый путь, т.к. он соответствует "естественному стремлению" обеих сред. Кроме того, при указанных направлениях движения достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата.

Одноходовый теплообменник имеет небольшой расход жидкости, соответственно небольшие скорости движения в трубах и поэтому низкий коэффициент теплопередачи. Для увеличения коэффициента теплопередачи при данной поверхности теплообмена можно уменьшить диаметр труб, увеличив их длину. Однако такие теплообменники имеют повышенный расход материала и неудобны для монтажа, поэтому увеличение скорости теплообмена достигается за счет использования многоходовых теплообменников.

Разбивку на секции в многоходовых теплообменниках производят таким образом, чтобы во всех секциях находилось одинаковое число труб. Вследствие меньшей площади суммарного поперечного сечения труб, размещенных в одной секции по сравнению с поперечным сечением всего пучка труб, скорость жидкости в трубном пространстве многоходового теплообменника возрастет в число раз, равное числу ходов. Для увеличения скорости и удаления пути движения среды в межтрубном пространстве ставятся сегментные перегородки. Повышение эффективности теплообмена в многоходовых теплообменниках сопровождается возрастанием гидравлического сопротивления (увеличение расхода энергии на перемещение жидкости) и усложнением конструкции теплообменника. Многоходовые теплообменники работают по принципу смешанного тона.

Кожухотрубчатые теплообменники жесткой конструкции применяются при разности температур между трубами и корпусом (кожухом) менее 40˚. При более высоких температурах возникает значительное напряжение в трубных решетках из-за неодинакового удлинения труб и кожуха, что может нарушить плотность соединения труб с решетками, т.е. привести к разрушению сварных швов. Поэтому при разности более 40˚С применяется кожухотрубчатый теплообменник не жесткой конструкции:

1) кожухотрубчатый теплообменник с линзовым компенсатором;

2) кожухотрубчатый теплообменник с U-образными трубками.

Теплообменник типа "труба в трубе" - состоит из нескольких последовательно соединенных трубчатых элементов, оборудованными двумя концентрически расположенными трубами (теплообменники этого типа смонтированы из труб, каждая из которых окружена трубой несколько большего диаметра). Одна среда течет во внутренней трубе, другая – по кольцевому каналу. Внутренние трубы соединены последовательно "калачами", а наружные – патрубками. При необходимости получить большую поверхность теплопередачи возможно не только последовательное, но и параллельное и комбинированное соединение таких секторов с помощью коллекторов. Благодаря небольшим поперечным сечениям трубного и межтрубного пространства в данных теплообменниках достигаются довольно высокие скорости жидкости. Это позволяет получить более высокие коэффициенты теплоотдачи и соответственно теплопередачи и достигать более высоких тепловых нагрузок на единицу массы аппарата, чем в кожухотрубчатых теплообменниках. Однако данные теплообменники более громоздки и требуют большего расхода металла на единицу поверхности теплообмена, чем кожухотрубчатые. Теплообменники данного типа могут эффективно работать при небольших расходах теплоносителей и высоких давлениях.

Ниже представлены конструкции кожухотрубчатых теплообменников и теплообменника тапа "труба в трубе".

 

Рисунок 1. Типовые конструкции кожухотрубчатых теплообмеников.

 

Рисунок 2. Конструкция теплообменника типа "труба в трубе".


Расчетная часть

 

Date: 2015-08-24; view: 507; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию