Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Уравнение Лагранжа. Свободные колебания системы с одной степенью свободы (начальные условия, уравнения, определения). Свободные колебания системы при сопротивлении





Для исследования колебательных систем с конечным числом степеней свободы используются уравнения Лагранжа в обобщенных координатах, составленные в предположении о том, что связи, наложенные на систему, идеальны; уравнения не содержат реакций связей; входящие в уравнения величины, определяющие движения системы, непосредственно связаны обобщенными силами.

Для консервативных систем уравнение Лагранжа записывается через потенциальную энергию:

В этом случае энергия характеризует полную механическую энергию системы.

Колебания системы с одной степенью свободы.

Система с одной СС – система, положение которой в пространстве однозначно определяется заданием одной обобщенной координаты. Например математический маятник движется по закону , где начальная фаза, фаза колебаний, амплитуда.

Уравнения малых свободных колебаний системы с одной СС.

Колебания называются свободными, если скорость изменения состояния системы определяется только состоянием самой системы. Такая система – линейный осциллятор.

Система консервативна, уравнение Лагранжа:

Сопротивление среды равно нулю, поэтому

Потенциальная энергия оценивается через жесткость системы: /

Общее решение: .

Подстановка для решения: , ,

Начальные условия для решения:

Свободные колебания при наличии сопротивления.

В этом случае на систему действует сила :

Введем отношение , тогда

Колебания системы с конечным числом степеней свободы, приведенная система. Кинетическая и потенциальная энергия малых свободных колебаний. Уравнение малых колебаний системы около положения устойчивого равновесия.

Детали или механизмы системы на практике являются сложной упругой системой с бесконечным числом степеней свободы. Для определения положения точек при колебаниях в любой момент времени необходимо найти функцию времени и координат точек. При расчетах упругая система заменяется более простой системой с конечным числом степеней свободы – приведенная система.

Кинематическая энергия системы с степеней свободы:

Если выполняется переход к обобщенным координатам:

инерционные коэффициенты.

Для колебаний возле положения устойчивого равновесия разложение коэффициентов в ряд по степеням ограничивается рассмотрением постоянного коэффициента , остальные же не рассматриваются ввиду их малости.

Потенциальная энергия системы может быть выражена через упругие коэффициенты:

Уравнения малых колебаний системы около положения устойчивого равновесия.

Подставляя в уравнение Лагранжа выражения для кинетической и потенциальной энергий b принимая, что: , можно получить систему дифференциальных уравнений, описывающих колебания системы:

Общее решение данной системы уравнений определяет колебания механической системы.


Date: 2015-08-15; view: 1208; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию