Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Минеральные вещества. Живой организм осуществляет следующие функции:





 

Живой организм осуществляет следующие функции:

1. Извлечение из внешней среды и превращение в приемлемые для организма формы химических соединений - материала для возобновления структур. Эта функция реализуется через прием пищевых продуктов, воды, и через дыхание.

2. Химическое преобразование оказавшихся во внутренней среде соединений (расщепление и синтез, трансформация) и выведение во внешнюю среду продуктов, которые более не используются (конечные продукты).

3. Высвобождение энергии, заключенной в поступающих извне соединениях, ее запасание в приемлемой для организма форме и использование в процессах жизнедеятельности.

Реализуются эти функции в общем виде следующим образом:

1. Источниками материалов для возобновления структур и энергообеспечения служат пищевые продукты, в составе которых организм получает углеводы (карбогидраты), липиды (жиры), белки (протеины), некоторые биологически активные соединения (например, витамины) и минеральные вещества. Белки, углеводы и липиды в усваиваемые формы преобразуются в пищеварительном тракте при участии активных компонентов, которые выделяются соответствующими железами желудка, кишечника, поджелудочной железы и поступают с желчью. Преобразование макромолекул заключается в их деполимеризации, т.е. в разрушении полимеров до мономеров (белков - до аминокислот, углеводов - до простых сахаров, липидов - до свободных жирных кислот и глицерола). Низкомолекулярные биологически активные и минеральные вещества всасываются во внутреннюю среду преимущественно без какой-либо предварительной химической трансформации.

2. Химические соединения с током крови поступают в органы (ткани), где включаются в процессы синтеза (образование специфических для тканей организма человека белков, углеводов, липидов и регуляторных соединений), процессы окислительно-восстановительного распада, в ходе которого высвобождается энергия химических связей. Промежуточные продукты используются в синтезе биологически активных веществ или выполняют регуляторные функции.

3. Высвобождение энергии в ходе окислительно-восстановительного распада сопряжено с ее запасанием в форме универсальных носителей. Они используются как источники энергии для выполнения всех видов работы, свойственных живому. Все перечисленные процессы протекают в организме повсеместно, однако можно отметить и локализацию их в отдельных органах и тканях.

Далее нам придется детальнее познакомиться с понятием биомолекулы.

Биомолекулы - обязательные компоненты живых организмов, создающие их характерные свойства - способность к обмену веществ и энергии, самовоспроизведению. Они выступают в качестве субстратов этих процессов или факторов, обеспечивающих их осуществление и (или) регуляцию. Вот их типы:

Нутриенты:

- Белки

- Липиды

- Углеводы

- Витамины

Регуляторы:

- Витамины

- Гормоны

 

Первые четыре типа биомолекул объединены понятием "нутриенты" - пищевые вещества, к их числу относятся также и минеральные соединения. Гормоны, выполняющие в организме регуляторную роль, в отличие от нутриентов образуются в специализированных органах - эндокринных железах. Витамины - по происхождению нутриенты, по функции - регуляторные соединения.

Остановимся немного на белках, так как именно белки (полипептиды) - это длинные протеиновые цепи, которые соединены отдельными звеньями - аминокислотами. Не напрасно аминокислоты называют строительными блоками организма! Большинство белков человеческого организма находятся в постоянном процессе синтеза и распада. Неизменный состав белка является выражением динамического равновесия. Каждая клетка нашего организма содержит очень много белка, который является "строительным материалом" для стенок клеток, мышц и волокон. Известно, что в организме человека в день синтезируется от 400 до 800 граммов белка, но только около 20 граммов из них представляет собой белок сократительных элементов мышечных тканей. Приблизительно через 8 дней весь протеин в организме обновляется. У клеток мозга, печени, почечных тканей время этого обновления - 10 дней. Конечным продуктом аминокислотного обмена выступает азот. Азотистый баланс организма соответствует темпам синтеза и распада. Негативный азотистый баланс сигнализирует, что разрушение белка в организме превалирует.

Интересно узнать, что многие тысячи различных видов белков, встречающиеся во всех живых земных организмах - растениях, животных, людях - состоят всего лишь из 20 аминокислот.

Всего же биохимикам известно около 200 различных природных аминокислот, а упомянутые выше 20, обнаруживаемые в белках - это протеиногенные аминокислоты. Классифицировать их можно по разным признакам. С наших позиций предпочтительнее упомянуть классификации, основанные на биологической роли аминокислот:

1. По строению соединений, получающихся при расщеплении углеродной цепи аминокислоты в организме, различают:

а) глюкопластичные (глюкогенные) - при недостаточном поступлении углеводов или нарушении их превращения они через щавелевоуксусную и фосфоэнолпировиноградную кислоты превращаются в глюкозу (глюкогенез) или гликоген. Это крайне нежелательное явление, если ваша цель - наращивание мышечной массы и силы! К этой группе относятся глицин, аланин, серин, треонин, валин, аспарагиновая и глутаминовая кислота, аргинин, гистидин и метионин;

б) кетопластичные (кетогенные) - ускоряют образование кетоновых тел - лейцин, изолейцин, тирозин и фенилаланин (три последние могут быть и глюкогенными).

 

2. В зависимости от того, могут ли аминокислоты синтезироваться в организме или обязательно должны поступать в составе пищи, различают:

а) заменимые;

б) незаменимые.

К незаменимым относятся изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин. В детском возрасте незаменимы также аргинин и гистидин (взрослый организм не требует их поступления с пищей). Существуют и другие классификации, которые не имеют особого значения применительно к тому аспекту, в котором мы будем далее рассматривать аминокислоты.

Date: 2015-08-07; view: 525; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию